selina的博客

BLDC电机的传感器安装(AD4571)

对于大部分BLDC控制系统,根据可用空间和电机轴安装的便利性,配置和安装传感器有许多选择方式。

典型的轴端配置包括一个安装在旋转轴上的直径磁化盘式磁体,该磁体安装在电机总成内部,如图3(a)所示。该磁体可提供一个穿过传感器平面的磁场。

在此配置中,无需使机械和电气组件接触即可直接读取转子角度。由于AMR技术不依赖磁场强度,因此能够耐受气隙变化。不依赖磁场强度还可增大机械容差并使磁体材料的选择简单化。紧凑的轴端配置意味着传感器可直接安装在非常靠近电子控制装置(微控制器、MOSFET)的印刷电路板(PCB)上,从而能够最大限度减少信号路由并减小与恶劣电机环境的距离。

另一种可能的配置是图3(b)所示的轴侧系统。轴侧配置可用于待检测轴无法在端头安装磁体的应用。在此配置中,由磁极环提供激励,传感器和磁极环可安装在轴上的任意位置。典型应用包括电动助力转向泵或由于空间限制不能使用轴端的BLDC电机。

由于ADA4571能够提供低延迟和精确的位置反馈信息,因此可对电机各相的电流进行精确控制,从而使电机对动态负载做出顺畅响应,或在变化的条件下维持恒速。最终结果就是更好的控制、最大的扭矩、更高的启动/停止效率,以及更佳的运行状况。

永磁同步电机介绍

目前我国电动机保有量大,消耗电能大,设备老化,效率较低,已完全进入更新换代的时期,而永磁同步电动机(PMSM)具有体积小、效率高、功率因数高、起动力矩大、力能指标好、温升低等特点。

永磁同步电机基本原理

* 电机是以磁场为媒介进行机械能和电能相互转换的电磁装置。

* 为在电机内建立进行机电能量转换所必需的气隙磁场,可有两种方法:一种是在电机绕组内通以电流来产生磁场,如普通的直流电机,同步电机和异步电机等;另一种是由永磁体来产生磁场,即永磁同步电机。

* 从基本原理来讲:永磁同步电机与传统电励磁同步电机是一样的,其唯一区别为传统的电励磁同步电机是通过在励磁绕组中通入电流来产生磁场的,而永磁同步电机是通过永磁体来建立磁场的,并由此引起两者分析方法存在差异。

永磁同步电机相比交流异步电机优势

1、效率高、更加省电:

控制isoPower器件辐射的正确方法是这样的!

对于含有isoPower器件的应用的辐射和噪声控制,PCB布局与结构是非常重要的。今天我们就说说相关辐射机制,并为您提供解决辐射问题的具体建议。

isoPower概述

isoPower常用来驱动iCoupler数据通道的副边,以及为片外负载供电。ADI应用了数种电源架构来实现隔离电源的设计目标,如高效率、小尺寸和高输出电压等(参见图1)。

 isoPower架构

图1. isoPower架构

这些架构有三个共同元件:

* 变压器,用来将电源耦合至iCoupler的副边;
* 振荡器储能电路,它以最佳频率开关流入变压器的电流,以实现高效率传输;
* 整流器,它在iCoupler的副边上重建直流电平。

角度传感器在BLDC电机控制中的作用

要实现电机的精确控制和高效换向,高分辨率电流和旋转位置信息至关重要。一般而言,在基于旋变器的系统中,分辨率和精度可能非常高,但终端解决方案可能价格昂贵且体积较大,这是因为旋变器本身会占用较大的物理空间。无传感器方案也可用于检测反电动势电流,而且还能降低传感器重量和成本,但是电机启动性能可能是个问题,因为这时不会产生反电动势,因此就无法得到可用的位置数据。其他解决方案,例如利用三个霍尔效应传感器检测电机磁体的位置,通常用于对成本敏感的应用中。这种情况下,要求的分辨率可以实现,但需要监控三个信号。此外,这些传感器不是配套的,这可能会产生空间和安装难题。

一种替代方案是使用基于异性磁阻(AMR)技术的角度传感器,这些传感器既便宜又精确。借助ARM传感器,不仅可实现高角度精度,而且可将一个检测元件和电子电路集成在同一封装中。这可获得非常小的传感器子系统,并且能够在电机总成内定位传感器。

ADI公司已与MR技术的领导者——Sensitec GMBH——开展合作,共同提供ADA4571,该产品将高精度AMR传感器和高性能仪表放大器集成在单个封装中。

驱动电机电磁性能分析

为了确保计算的准确性,有必要针对驱动电机的电磁性能进行分析与校核。在此利用有限元法对驱动电机进行在空载、转矩过载、高速弱磁等工况以及短路去磁情况进行了分析与计算。永磁电机中磁钢与有槽电枢铁心相互作用而致使气隙磁导发生了改变,从而不可避免地产生齿槽转矩,导致转矩波动、噪声与振动,进一步地将影响整个系统的控制精度。很多削弱齿槽转矩的方法被提出,比如斜槽、斜极、优化槽开口、优化极弧与磁钢形状等。其中斜槽方法不仅驱动技术成熟、生产工艺简单、效果很好,而且其获得的反电动势波形极其正弦。图1为驱动电机斜槽前后齿槽转矩的对比,斜槽前齿槽转矩占总额定负载时电磁转矩的2%,斜槽后,齿槽转矩基本削弱。1500r/min时,驱动电机反电动势计算结果如图2所示。由于斜槽使得反电动势更加正弦,其谐波含量大幅度地减小。

驱动电机齿槽转矩图

图1:驱动电机齿槽转矩图

空间矢量脉宽调制(SVPWM)技术

PWM技术作为电力电子装置的核心技术,被广泛的应用于变频调速电机传动中,电机控制的最终目的是产生圆形旋转磁场,从而产生恒定的电磁转矩。在众PWM调制方法中,空间矢量脉宽调制(SVPWM)因其宜于数字控制器实现、输出电流波形好且直流侧电压利用率高等优点被广泛应用于两电平电压逆变器的控制中。

一、两电平电压型逆变器电压空间矢量

当由三相对称的正弦电压供电时,给出的电压矢量为一个幅值与相电压幅值相等的空间矢量,其端点的运动轨迹为圆形,且旋转的角速度为相电压的电角频率。由环球电机学理论知,电压的积分即磁链。要想产生的定子磁链为理想的圆形,必须保持电压空间矢量的幅值不变且相角连续变化。逆变器能输出的电压矢量数量很有限,SVPWM可以通过快速交替地输出逆变器各电压矢量,从而引导定子磁链形成接近圆形的轨迹。

图1给出了三相电压型逆变器的拓扑结构。每相都含有两个桥臂,每个桥臂均由一个可控器件和一个反并联二极管组成。对于星型连接的负载,负载各相的相电压可以通过计算负载中性点n与直流电源假想中点N的电位差求得。

如何从一名“极限飞盘”爱好者华丽转变为ADI院士

一个新的“无线电架构与设计”博客系列将于近期在技术支持论坛登场,该博客将由一支宽带射频收发器专家团队撰写。

ADI Fellow(院士)Tony Montalvo将贡献新系列的首篇文章,分享其有关“无线电架构与设计”的技术和应用知识,让您一睹“幕后的秘密”。我有幸采访到Tony,得以深入了解有关这个新博客系列和射频收发器的一些信息,以及他如何从一名“极限飞盘”爱好者变成一位受到高度认可的ADI创新者。

Tony Montalvo ADI院士

我知道您是ADI研究员,这相当了不起。成为一名研究员意味着什么?

Tony Montalvo:在9000名员工中,研究员大约有30位,所以被任命为研究员是巨大的荣耀。看到我的名字忝列其中,我感到羞愧,因为有些研究员是这个行业的开创者,甚至是不折不扣的权威人士。核心标准是创新和影响力。也就是说,创新必须有影响力,而衡量影响力的最简单指标是收益。

能否谈谈这个新的博客系列?

Tony Montalvo:我们的产品给传统上采用分立器件的应用带来了一些非常复杂的技术。我认为客户可能有兴趣了解我们的无线电理念,我们是如何做到的,帷幕后面隐藏了哪些秘密。

什么激励您成为一名工程师?

九项常被忽略的ADC技术规格

作者:Brad Brannon,ADI公司系统应用工程师

如此之多的模数转换器(ADC)可供选择,我们总是很难弄清哪种ADC才最适合既定应用。数据手册往往会使问题变得更加复杂,许多技术规格都以无法预料的方式影响着性能。选择转换器时,工程师通常只关注分辨率、信噪比(SNR)或者谐波。这些虽然很重要,但其他技术规格同样举足轻重。

分辨率

分辨率可能是最易被误解的技术规格,它表示输出位数,但不提供有用的性能数据。部分数据手册会列出有效位数(ENOB),它使用实际SNR测量来计算转换器的有效性。一种更加有用的转换器性能指标是以dBm/Hz或nV/√Hz规定的噪声频谱密度(NSD)。NSD可以通过已知采样速率、输入范围、SNR和输入阻抗计算得出(dBm/Hz)。已知这些参数,便可选择一款转换器来匹配前端电路的模拟性能。这种选择ADC的方法比仅仅列出分辨率更有效。许多用户还会考虑杂散和谐波性能。这些都与分辨率无
关,但转换器设计人员一般要调整他们的设计,使谐波与分辨率相一致。

电源抑制

直流、交流伺服电机的结构及工作原理

一、伺服电机(servomotor)的由来和定义

伺服:一词源于希腊语“奴隶”的意思。人们想把“伺服机构”当个得心应手的驯服工具,服从控制信号的要求而动作。

伺服系统:是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。伺服的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制的非常灵活方便。

由于它的“伺服”性能,因此它就被命名为伺服电机。其功能是将输入的电压控制信号转为轴上输出的角位移和角速度驱动控制对象。

伺服电机一般分为两大类:直流伺服电机、交流伺服电机。

二、交流伺服电动机

1、交流伺服电机的结构

伺服电机的控制方式有哪些?

速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。

如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。

如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。

如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。

如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。

就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。