Σ-Δ调制器提高运动控制效率

Nicola O’Byrne ADI公司高级系统应用工程师

工业运动控制涵盖一系列应用,包括基于逆变器的风扇或泵控 制、具有更为复杂的交流驱动控制的工厂自动化以及高级自动 化应用(如具有高级伺服控制的机器人)。这些系统需要检测和 反馈多个变量,例如电机绕组电流或电压、直流链路电流或电 压、转子位置和速度。变量的选择和所需的测量精度取决于终 端应用需求、系统架构、目标系统成本或系统复杂度。还有其 他考虑因素,例如状态监控等增值特性。据报道,电机占全球 总能耗的40%,国际法规越来越注重全体工业运动应用的系统 效率(参见图1)。

“”
图1. 工业驱动应用图谱

各种电机控制信号链拓扑中的电流和电压检测技术会因电机额 定功率、系统性能要求和终端应用而有所差异。由于这个原 因,不同的传感器选择、电流隔离要求、ADC选择、系统集成 度和系统电源/接地划分,导致电机控制信号链实现方案也不相 同。虽然隔离要求通常对最终电路拓扑和架构有着重要影响, 但本文关注的重点是如何改善电流检测(作为一个影响因素)来实 现更高效的电机控制系统。

电流和电压测量

图2所示为一个通用电机控制信号链。为实现高保真测量而进行 的信号调理并非易事。相位电流检测尤其困难,因为该节点连 接的电路节点与逆变器模块核心中的栅极驱动器输出的节点相 同,因此在隔离电压和开关瞬变方面的需求也相同。

“”
图2. 通用电机控制信号链

电机控制中最常用的电流传感器为分流电阻、霍尔效应传感器 (HES)以及电流互感器(CT)。虽然分流电阻不具有隔离功能且会 引起损耗,但它是所有传感器中最具线性、成本最低且同时适 用于交流和直流测量的传感器。为限制分流功率损耗的信号电 平衰减通常将分流应用限制为50 A或更低。电流互感器和霍尔效 应传感器可提供固有的隔离,因此能够用于电流较高的系统, 但它们的成本更高,并且在精度上不及采用分流电阻的解决方 案,这是由于此类传感器本身的初始精度较差或者在温度方面 的精度较差。与传感器类型不同,电机电流测量节点有很多选 择,如图3所示,其中以直接同相绕组电流测量最为理想,可 用于高性能系统。

“”
图3. 隔离式和非隔离式电机电流反馈

有许多拓扑可用来检测电机电流,并需考虑多种因素,例如成 本、功耗以及性能水平,但对大多数系统设计人员而言,一个 重要目标是在成本控制范围内提高效率。

F从霍尔效应传感器到分流电阻

与隔离式Σ-Δ调制器耦合的分流电阻可提供最优质的电流反 馈,其中的电流电平足够低。目前,系统设计人员明显倾向于 从霍尔效应传感器转移到分流电阻,并且与隔离式放大器方案 相比,设计人员更倾向于采用隔离式调制器方案。将霍尔效应 传感器替换为分流电阻的系统设计人员往往会选择隔离式放大 器,并继续使用之前在基于霍尔效应传感器的设计中使用的模 数转换器(ADC)。这种情况下,无论模数转换性能如何,设计性 能都会受到隔离式放大器的限制。

将隔离式放大器和ADC替换为隔离式Σ-Δ调制器可消除性能瓶 颈,并大大改善设计,通常可将其从9到10位精度的反馈提升到 12位水平。此外,还可配置处理Σ-Δ调制器输出所需的数字滤 波器,以实现快速过流保护(OCP)环路,从而无需模拟过流保护 电路。

现有Σ-Δ调制器可提供±250 mV (±320 mV满量程用于OCP)的差分输 入范围,特别适合阻性分流器测量。模拟调制器对模拟输入持 续采样,而输入信息则包含在数字输出流内,其数据速率最高 可达20 MHz。通过适当的数字滤波器可重构原始信息。由于可在 转换性能和带宽或滤波器群延迟之间作出权衡,因此更粗、更 快的滤波器能够以2 μs的数量级提供快速OCP响应,非常适用于 IGBT保护。

缩小分流电阻尺寸

从信号测量方面来看,一些主要难题与分流电阻的选择有关, 因为需要实现灵敏度和功耗之间的平衡。电阻自身的发热效应 导致的非线性情况也会是使用较大电阻所面临的挑战。因此, 设计人员必须做出权衡取舍,而更棘手的是,他们往往需要选 择一个适当大小的分流电阻,以满足不同电流电平下各种型号 和电机的需求。如果面对数倍于电机额定电流的峰值电流,并 需要可靠捕获两者的值,则保持动态范围也是一个难题。

面对这些难题,系统设计人员非常需要具有更宽动态范围或 更高信噪比和信纳比(SINAD)的优异Σ-Δ调制器。最新的隔离式 Σ-Δ调制器产品具有16位分辨率,并可确保高达12位有效位数 (ENOB)的性能。

高性能隔离式Σ-Δ调制器

更高性能的隔离式Σ-Δ调制器可满足工业电机控制设计中的多 种需求,并可通过缩小分流电阻尺寸来提高电机驱动器的功效。ADI公司的调制器AD7403就是一个很好的工业应用实例(参见 图4)。它是AD7401A的新一代产品,可在相同的20 MHz外部时钟 速率下提供更宽的动态范围。这使设计人员可以更为灵活地选 择分流电阻大小,并能够在更高电流电平下使用分流电阻替换 霍尔效应传感器。该芯片的ENOB典型值为14.2位。此外,还可 通过缩短测量延迟改善动态响应。这款器件的隔离方案支持比 上一代产品更高的连续工作电压(VIORM),从而可通过使用更高 的直流总线电压和更低的电流来提高系统效率。

“”
图4. 高性能二阶Σ-Δ调制器AD7403

采用ADSP-CM40x混合信号控制处理器的系统 解决方案 如前所述,实施Σ-Δ调制器需要使用数字滤波器,这通常使用 FPGA或ASIC来实现。ADI公司混合信号控制处理器ADSP-CM408F的 出现将改变这种设计方式,因为它包含Sinc滤波器硬件,可直 接连接调制器。这有望加快运用阻性分流器和Σ-Δ调制器的电 流检测技术的普及。

作者简介 Nicola O’ Byrne是ADI公司高级系统应用工程师。

推荐阅读