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7 Field Oriented Control of Induction Motors

The principle of field oriented control is developed in the contextof a squirrel cage induction motor drive. The block
diagram of the drive is presented and explained.

7.1. Space Phasors

The conceptual foundation for field oriented control lies
in space phasor modelling of AC machines. It is therefore
necessary to first develop an appreciation of the concept
of space phasors. Consider a three phase winding in an
AC machine, for example, the stator winding of an
induction motor. Figure 7.1a shows the schematic
diagram of the three coils, each of which has N_ turns.
The diagram shows the spatial orientation of the three
coils, the angles being in electrical radians.
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It is assumed that the spatial distribution of mmf pro-
duced by each coil is sinusoidal in nature and also that

the neutral is isolated.

So that the condition

i () +i ) +iyt) =0 .7.1-1
holds at all instants of time. The currents can have any general variation with respect to time. The axis of
coil 1 is taken as the reference for spatial orientation. At any given instant of time, the net mmf produced by
the three coils is given by adding the mmyfs due to the individual coils, but with appropriate spatial orienta-
tion i.e., vectorially. The net mmf can, therefore, in general have components along and perpendicular to the
reference direction, and these components are denoted by subscripts a and b respectively. The values are
given by

mmf, = N [i (D)+i,(t) cos v+ 1i,(t) cos 27]
mmf, = N[i,,(t) sin y+1,(t) sin 2y]
where y = 2n/3 electrical radians. The system of three coils can be replaced by a system of two coils a and

b as shown in figure 7.1b. having the same number of turns N_ as the original coils and carrying currents
i (t) and i (t) given by

i (0 =i,(t) - (1/2) i,(t) - (1/2)i,(t)

i) =1, (V3/2) - i,,(t) (V3/2)

. 7.1-4

.1.1-5
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these can be rewritten as

i, =@3/2)i,® 27.1-6
1,(0) = (V32)[,) - i, (1)) 2117
The net mmf produced by the two systems of coils is identical. The net effect of all the currents is thus
obtained by adding i_(t) and i_(t) with proper spatial orientation. Using complex notation, this can be

expressed by defining a current space phasor i(t) by

L) =i 0 +ji,® .7.1-8

The current space phasor is a complex function of time,
whose real and imaginary parts give the components of
current along two mutually perpendicular directions in
space. Pictorially the space phasor i (t) can be repre- ig(t igplt)
sented by a vector in a two dimensional plane, the real
and imaginary components being i_(t) and i (t)

At ref
i SB( t )
The space phasor can also be expressed in polar instead ~ Figure 7.2
of cartesian form as follows
L) =1t) PO ..7.1-9

where i (t) - instantaneous amplitude of space phasor and p - instantaneous angle that the space phasor
makes with the reference direction.

Since the orientations refer to spatial direction in figure 7.2, it should not be confused with the usual time
phasor diagram of sinusoidal steady state analysis.

The space phasor i (t) can also be expressed in terms of the original three phase currents as follows
1O =1,(t) +i,0) &7 +1i,(t) & «..7.1-10
where y=2.m/3

Similarly, space phasors can be defined for other quantities such as voltages and fiux linkages associated
with the three phase system of windings.

From a study of polyphase windings, it is seen that, if the three individual quantities are balanced three
phase sinusoids, then the space phasor will have a constant amplitude and will rotate in space with constant
angular velocity.
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But, the definition of space phasors is not
limited to sinusoidal quantities alone, Any
general time variation is possible for the three by Phase 2
individual variables. The concept of a space Isy 50 180
phasor is a useful tool in the analysis of the AC
motor drives, because the inverters that drive the 5 ] .
motor produce non-sinusoidal voltages. The / i gt
currents produced by a current source inverter, I3 /

for example, have the waveform shown in figure y Blg
7.3. The corresponding space phasor will (a) (o8] (b
therefore occupy a fixed position in space for
one sixth of a cycle and jump in position by 60°

1 (188710 240°)
(128 to %0°)

el

[60to 120°)

at every commutation in the inverter. Figure 7.3
This describes the equivalence between three phase and two phase windings, with the important extension

that the two real quantities are composed into one complex quatity known as the space phasor. The advan-
tage, is that the motion of the space phasor can be visualized.

7.2. Equations in Space Phasor Form

The symmetrical three phase squirrel cage induction motor has a
three phase system of coils on the stator and a cage on the rotor e Rotor axis
which can be considered to be equivalent to a three phase winding. sb 1

The two sets of windings can be represented by two equivalent two 1em¢ t:-%i)\ %

phase coils as shown in figure 7.4. The rotor axis makes an angle
€ (t) with respect to the stator axis.

Stator axis

The two current space phasors i (t) and i (t) can be defined for the Figure 7.4
stator and rotor current respectively as follows

i) =1, +ji, (O .7.2-1
i) =i (1) +ji (0 w7.2-2
The two space phasors are defined with respect to different coordinates axes, i(t) with respect to stator
coordinates and i (t) with respect to rotor coordinates.

The flux linkages of the various coils are a first step towards the machine voltage equations

y (O =L_i(t)+Mi[(t)cose -Mi (t)sine . 1.2-3

s sa b

vy, =L i, +Mi()sine +Mi,(t)cose ' w1.2-4

where L is the self inductance and M is maximum value of mutual inductance between stator and rotor
coils.

Combining the equations 7.2-3 and 7.2-4 to form the stator flux space phasor.
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LAGERTMGE SRR
=L i(t) + Mi(t) o .7.2-5

Similarly, the rotor flux linkage space phasor can be derived as

y) =y, ®O+jy. @
=L i(t) + Mi(t) e .7.2:6

where L _is the self inductance of the rotor coils referred to stator number of turns. The form of these
equations 7.2-5 & 7.2-6 resembles an equation for a coil with self and mutual inductance except the
expression for the current in the second term. It must be remembered that equation 7.2-5 is with respect to
stator coordinates and equation 7.2-6 is with respect to rotor coordinates. Therefore, space phasors defined
with respect to another coordinate system have to be transformed to the co-ordinate system of the equation.

Multiplication by ' results in a clockwise rotation of the coordinate system by an angle €, while multipli-
cation by e results in an anticlockwise rotation of the coordinate system by the same angle.

The voltage-current equations for the stator and the rotor windings are written in the space phasor form.
First the individual coil equations are written as:

v, () =R i () + (d/dtyy_(t) 727
v,(®) = R_i_(t) + (d/dOy, () .7.2-8
v (1) = R i (t) + (d/dbyy (1) 729
V() = R i () + (d/dOw, (1) .7.2-10

Combining eq. 7.2-7 with 7.2-8 and 7.2-9 with 7.2-10, the resultant complex equations:

v(® = R i () + (/dtyw (1) 72411
v.(0 =R, () + (d/dOw (1) 7.2-12

Using equations 7.2-5 and 7.2-6 these can be rewritten as
v (t) =R i(t) + L (d/dt) i(t) + M(d/dt)(i(t) &) ..7.2-13
vt =R, i(t) + L (d/dt) i (t) + M(d/dt)(i(t) e¥) 7.2-14

eq. 7.2-13 refers to the stator and is in stator coordinates whereas eq. 7.2-14 refers to the rotor and is the
rotor coordinates. For the squirrel cage induction motor, of course, v (t) is zero.

Each of the above equations is actually two equations combined into one. With these two equations the
electrical behaviour of the machine is defined.

The torque developed by the machine is given by
M, = (2/3)M Im[i () {i (t)e’*}"] 1.2-15

Where Im stands for the imaginary part and * denotes the complex conjugate. Therefore the complete
equations that describe the behaviour of the machine are as follows:

R, i,(t) + L (d/dt) i (t) + M(d/dO)(A ) &) = v (1)
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R i(t) + L (d/dt) i () + M(d/dt)(i(t) e¥) = 0

J(dw/dt) = (2/3)M Im[i &) {L©®e=}] - M,_,

o = de/dt .7.2-16

The above equations describe the dynamic behaviour of the machine. The steady-state behaviour, pertaining
to the sinusoidal steady state operation, can be deduced from the above.

7.3. Sinusoidal Steady State Performance
Under sinusoidal steady state conditions, the applied stator voltages can be expressed as follows:
v, = V2 V., cos(ot + T,)
v, () =2 V_cos(@t-y+1)
v, () =2 V_cos(®,t - 2y +1,) .7.3-1

When composed into a space phasor according to eq. 7.1-10, the stator voltage space phasor is expressed as

v (1) = (3V2/2) ¥, e+ .7.3-2
ie '
v (1) = (3V2/2) V, &t , 733

where V_is a complex constant, with amplitude equal to the rms line to neutral voltage and spatial orienta-
tion giving the instantaneous position of the peak of the voltage space wave at the instant t = 0. With the
voltage input, the solution to the stator and rotor equation in 7.2-16 can be shown as:

i(t) = (3V2/2) L e 2734
i(t) = (3V2/2) I & .7.3-5
where 0, = @, - ® = ®, - de/dt .. 7.3-6

The rotor current referred to the stator coordinates is given by
i(t)e® = (3V2/2) L o 2137

With the definitions M =L ; L = (1+0)L,; L, = (1+0 )L, the stator and rotor equations in 7.2-16 are
rewritten as

R, +jo o L)L +jo L d+1) =V 738
R, +jo,o L)L +jo,LI+1)=0 ..7.3-9

If the ratio between the rotor frequency ®, and the stator frequency @1 is defined as the slip i.e. s=0,/0,,
equation 7.3-9 can be rewritten as

®R/s + jo,0 L)L + jo,L A+) =0 ..73-10

Equations 7.3-8 and 7.3-10 together yield a steady state equivalent circuit of the induction machine shown
in figure 1.5.
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The complex constants V, I and I are proportional to the
instantaneous values of the corresponding space phasors

. . . Re oslo ol Res
¥,i,andi atthe instantt=0. PEP NN S PP
I 1
i3 T

However, because of the assumption that the winding
mmfs are sinusoidally distributed in space, there is an one Vg Lag l s+ Ly
to one correspondence between the above circuit and the

usual one based on time phasors.

Hence, the parameters of the above circuit can be
determined by the usual no-load and locked rotor tests.

Figure 7.5
All the steady-state characteristics of the machine such as

torque-speed characteristics, circle diagram, etc., can therefore be deduced from the equivalent circuit of
Jfigure 7.5. However, the main interest in the development of the concept of field oriented control is to know
the position and magnitude of the different fluxes in the machine. The space phasor diagram of figure 7.6
below is drawn to show the spatial orientation of the different fluxes in the machine.

These can be defined as follows:
Mutual or airgap flux y =L [I+[JALI

Stator Flux v, =oL I + LJL+]
=L[(1+o)L+L]ALI .7.3-11

Rotor Flux is W, = 6L L +L [I+]
=L[(+o)I+[JALIL .7.3-12

In addition to the magnetising current I responsible for
mutual flux, two additional magnetising currents [ and
I have been defined in eq. 7.3-11 and 7.3-12 to account
for stator and rotor fluxes also. Even though this has
been done in the context of sinusoidal steady-state
operation, identical definitions can be given in the
general case of transient non-sinusoidal operation also.

All the fluxes rotate at the synchronous speed m, with
respect to the stationary stator axis. The torque developed
by the machine can be expressed as the vector product of
the stator current and any of these fluxes.

. . . Figure 7.6
In order to establish an analogy between the induction

motor and the DC machine, with similar decoupling between flux and torque, the stator current I should be
decomposed into two spatially orthogonal components, along and perpendicular to the flux. But which
flux ?

To decide this question, the machine equations 7.2-16 have to be recast using the stator current components
oriented along the different fluxes. It has been established that to obtain decoupling between flux and
torque, the equations should be viewed from a frame of reference fixed to the rotor flux v (.
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7.4. Dynamics in Rotor Flux Frame of Reference

It is assumed here that the machine is operated from a current source which impresses on the machine
windings a given stator current space phasor i (t). This can be realised in practice with a pulse width
modulated inverter operating at a switching frequency of a few kilohertz in the current regulated PWM
mode. The first of the machine equations 7.2-16, therefore serves only to determine the stator voltage v (t)
and need not be considered in determining the dynamic response of the machine. It is the second equation,
corresponding to the rotor, that determines the machine behavior.

This equation is repeated here, withM =L _and L = (1+0)L_
Ri(t) + (1+0)Ly(d/dt)i (t) + L(d/d){( (e’ )} = 0

The rotor flux space phasor is given by

w (1) = L(1+0)i(t) + L i (t)e’ .74-1
ip rotor co-ordinates. The representation in terms of stator coordinates can be obtained by multiplying by
ec, giving

w (e = Li0) + (1+0)iLMe = L, 742
Therefore i_(t) =1(t) + (1+0)i (e 7143

The rotor equation then becorhes

[R/(A+0)H{i (1) - i)} el + L(d/dty{[i_ (t)-i(He¥]} + L(d/dt)(i(te’s) =0 .7.4-4
It must be observed that 7.4-4 is still in terms of the rotor coordinate system. After simplification
[R/(A+0)Hi ) - i®)}e’ + L {(d/dt)i (t) - jde/dt)i (t)}e’]=0 .. 7.4-5

If equation 7.4-5 is multiplied by e, the resulting equation will be in terms of stator coordinates.
de/dt = o, the speed of the machine,

L(d/dt)i () + [R (1+0)]i (1) - joLji_(t) - R/(1+0))i(t) =0 ..74-6
This equation can now be expressed in terms of a coordinate system fixed to the rotor flux y (t) or equiva-

lently to the current i_(t). To do this, i_(t) is first expressed in polar form with respect to the stator coordi-
nates as

i (=i (e 747

where i_(t) is the instantaneous magnitude of the current space phasor i_(t) and p is its instantaneous
position with respect to the stator real axis. Now eq. 7.4-6 can therefore be written as:

L(d/dt)i_(1)e*® + [R /(1+0)]i_ (HePO - joL i (H)eP® - R/(1+6 )i (t) = 0 748
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ie
L (d/dt)i_()e'<® + [R/(1+0)]i_(He® + JL (dp/dti (t)eP?® - joLi (0)eP® = (R/(1+0)i(t) ..7.4-9

Eq. 7.4-9, which is still in the stator coordinates, can now be transformed into rotor flux coordinates by
multiplying by e¥®, giving

L,(d/dt)i_(®) + [R/(1+6)]i_ (1) - j(@,-0) Li, () = R/(1+0)iL{H)e?? ..7.4-10

where dp/dt = ®__is the instantaneous angular speed of the rotor flux. The right hand side of eq. 7.4-10
contains the transformation of the stator current space phasor to the rotor flux coordinate system.

If the coordinates of the stator currents in this system are denoted by i, (t) and iqs(t), then
i(eV =1, (t) +Hi () ..7.4-11
Eq. 7.4-10 can now be seperated into real and imaginary parts as follows:
L(d/dt)i_(t) + [R/(1+0)]i_ () = R /(1+0 )i, (1)
(o) L () = [R/(1+0)]i_(t) ..7.4-12
Defining the rotor time constant as
T =L/R =L (1+0)/R, ’ ‘ ..7.4-13
Eq. 7.4-12 can be rewritten as
T(d/dt)i (1) +i (1) =1,(t) .. 7.4-14
o (1) = (dp/dt) = @ + (i (/T (1) ..74-15
The above equations now describe the dynamics of the current fed induction motor in the rotor flux
oriented reference frame, referred to as field oriented frame of reference. i, (t) and iqs(t) are the inputs to the
machine. i_(t), dp/dt and m are the outputs or the response of the machine. To make the equations com-
plete, the torque equation should also be written in terms of field coordinates.
From eq. 7.4-15, the torque developed is given by
M,(®) = 23){L, Im{i ()[i (DeT"}
M,() = (/3){Ly/(1+5)} Im{i, Olk,, (O - LO]')

= (23){L/(1+0)} Im{i (D[ (O]}
M) = 2/3){L/(1+0)} Im{i (DI (e T’}

= (23){Ly(1+0)} Im{i (D[ (®)ePO]}

= @)L /(1+0)} Im{i_ O, O+, ©O))

= (213){L/(1+0)} 1,01 () . ...7.4-16

Therefore the complete machine equations can be given as:
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T(d/dy i (0 +i () =i, () 7417
w,, = (dp(®/dt) = w(t) + (i (/T (B} ..7.4-18
J(dw/dt) = (2/3)(LJ(1+0))i, O (©) - M., .7.4-19
de/dt = ‘ ..7.4-20

The decoupling between flux and torque control is now clear. If it is desired to change the flux, the input
i, (t) to the machine should be controlled. The response of i_(t) is slow, limited by a large rotor time
constant T, as seen from eq. 7.4-17.

However, if it is desired to control the torque, this is done by controlling the input iqs(t) appropriately,
without disturbing i_(t) by changing i,(t). The torque response does not have any limiting time constants
under this type of control and torque response is instantaneous.

Thus the stator current is now decomposed into two spatially orthogonal components i, (t) and iqs(t),
resembling the field and armature currents of the dc machine, which control the flux and the torque
independently. This is the basis of field oriented control of the induction motor. Pictorially the process of
control can be represented as shown in
figure 7.7

Assume that initially the stator current
space phasor is OA. If it is there is a need
to increase the developed torque, the
correct way to achieve fast decoupled
response is to move the stator current to
position OB, thereby keeping i, constant
and changing only iqs. If an attempt is
made to move the current space phasor to
a location such as OC then i, and conse-
quently i__have to change. This will result
in a slow oscillatory response of the
machine.

Figure 7.7

The dynamic behaviour of the induction
motor in the rotor flux reference frame can be represented by the block diagram shown in figure 7.8.
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The motor block diagram
consists of three sections. In cos O
the first section the three
phase currents in the stator
windings viz. isl, i, and i53
are converted into equiva-
lent two phase stator
currents i and i,

Figure 7.8

In the second section, these two phase currents are transformed onto the rotor flux oriented components i,
and iqs by the relationship:

iL() =i _(0) cos p(t) + i (t) sin p(t) 7421
iqs(t) =1i,(t) cos p(t) - i, (t) sin p(t) o 7.4-22

p being the instantaneous position of the rotor flux with respect to the stator axis. The third section incor-
porates the dynamics described by equations.
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7.5. Field Oriented Control Of Induction Motor
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Figure 7.9

It is clear by now that in order to achieve decoupled control of the flux and torque in an induction motor,

~ the components i, and iqs of the stator current i_have to be controlled. The magnitude of i ; should be
controlled to adjust the torque and the magnitude of i, should be controlled to adjust the rotor flux or
equivalently the rotor flux magnetising current i_. The structure of an induction motor drive based on field
orientation is therefore as shown in figure 7.9.

The torque loop generates the command value i and the flux loop generates the command i, . The speed
and position loops are closed around the torque loop. The command values of the field oriented current
components have to be translated into command values for the actual stator currents, ie. i i, . andi, .
This is accomplised by a process which is the inverse of that which occurs within the machine. The relevant
equations are

isuref = 1dsref cosp - iqsref sin p ..7.5-1
isbref = iqsref COSp + idsref Sin p 75'2
i‘slref = 3 isa{ef ) ...7.5-3
152(ef = —(1/3)lsaref + (1/\/3)1sbref -75'4
is31‘ef = _(1/3)isaref - (1/\13)isbref 75'5

If the command values for the field oriented current components are to be properly translated into com-
mand values for the phase currents, it is clear that accurate information regarding the instantaneous position
of the rotor flux, given by the angle p, is essential. In figure 7.9, this is accomplished through the flux
acquisition system.

Provided this task can be performed accurately, field oriented control yields significant advantages:
- it allows direct control of flux and torque, making torque limiting and field weakening possible

- with correct information regarding the angle rho, the motor is self controlled and cannot pull out; in the
event of overload torque, the motor is stalled with maximum torque.
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- decoupling between flux and torque is effective even under dynamic conditions.

- since the controllers process dc quantities in the steady state, the effect of unavoidable phase shifts in
the control loops is not present,

- efficient control in field weakening with indirect field oriented control without non linear or adaptive
control.

These advantages, however, are based on acquiring the flux signals accurately over the entire speed range down
to zero speed, especially for reversing drives. This is a formidable task and had to await the advent of signal
processing and vector transform silicon chips. With current trends in signal processing these tasks can be
effectively accomplished.

Depending on the method employed to sense the flux, field oriented control can be classified into two major
categories, direct and indirect.

In direct field orientation, the air gap flux in the machine is directly measured by measuring the induced voltage
in Hall sensors or flux sensing coils and integrating it. However, there are several difficulties associated with this
approach. The motor has to be specially modified in order to accomodate the sensing device. Moreover, the Hall
sensors are fragile. Also, the integrators are subject to drift at low frequencies and this limits the lowest speed at
which the technique can be used. The induced voltage in the sensing devices contain harmonics due to rotor
slots.

These harmonics are difficult to filter as their frequency changes with the speed of the machine. It is because of
these reasons that the direct method is usually very difficult to employ. But it has the merit that the measurements
are not dependant on machine parameter values, which change with temparature, saturation etc.

Instead of using the voltages from sensing coils, the machine terminal voltages themselves can be used, How-
ever, in this case, the stator resistance drop has to be compensated before integration. Since the resistance
changes with temparature, this is difficult to achieve accurately.

A different approach is followed in the indirect method of field orientation. This method uses the model equa-
tions of the machine with easily measurable quantities as inputs and calculates the magnitudes and position of
the rotor flux. The block diagram of figure 7.8 which is based on the model of the machine in the field oriented
coordinate system, can itself be used to generate the information regarding the actual values of i @ iqs andi_,the
torque m, and the angle p that the rotor flux makes with the stator axis. The total signal processing tasks to be
performed to implement field orientation by this method involves two sets of coordinate transformations.

- the transformation from the actual phase quantities to field oriented coordinates in flux acquisition system.
- the reverse transform from the field coordinates to actual phase coordinates in the control system.

The flux acquisition system accepts as inputs the three (two are sufficient for motors with neutral floating)
stator currents and the speed ® and/or the rotor position available from tachometers or position encoders
used for speed and position feedback.

Accurate orientation of the stator current space phasor by this method requires a knowledge of machine
parameters for performing the computation. For example, the rotor time constant T, should be known
accurately. Since the rotor resistance varies with temparature, T, is subject to variation. To achieve best
results, indirect field orientation requires some kind of adaptation scheme to keep track of parameter
variations.
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