伺服

《机电伺服系统在低频模态负载状态的极限环谐振现象影响因素分析》

供稿:京精密机电控制设备研究所

汤力、李清、冯立墨、杨艳丽

摘 要:

针对机电伺服系统在低频模态负载状态发生极限环结构谐振现象进行机理分析,辨识负载效应模型,针对性进行避免极限环结构谐振的试验,并对试验效果进行分析。仿真和试验结果表明,该方法能使系统负载谐振频率得到提高,极限环结构谐振现象消失,显著改善伺服系统的动态性能。

1、概述

近年来,随着数字集成电路、功率器件、稀土永磁电机等电力电子技术的飞速发展,机电伺服及其控制技术得到了广泛应用。

机电伺服系统在飞行器发动机推力矢量控制应用方面,理想表现是响应迅捷,动态性能稳定,精度高。但实际上伺服系统的快、稳、准三项指标是互为矛盾的联合体。

为满足高动态性能的要求,机电伺服系统一般采用提高增益的方法,但高增益在面对非线性低频模态负载状态时易出现系统谐振,且该谐振现象由于受非线性的影响,发生的规律性不强,难以从线性系统稳定性判据的方法进行分析。

结构谐振与伺服电气系统谐振发生耦合易导致系统出现低频率、小阻尼系数的综合谐振。该综合谐振严重影响伺服系统的稳定性并限制系统的带宽,而伺服带宽是限制跟踪误差和过渡过程品质的主要因素。伺服带宽受到系统综合和结构谐振特性的双重限制。本文所述机电伺服系统谐振典型曲线如下图1所示。

图1 极限环结构谐振曲线

以往的研究均通过间隙描述函数和动量定理分析含间隙系统驱动大惯量负载时产生的极限环振荡问题,但这一方法需要解决如何确定两个传动体的等效质量问题,而在具有多个传动件的系统中,难以确定等效质量。

飞行器发动机作为推力矢量机电伺服系统的负载,同样是决定伺服系统性能的重要因素,发动机的负载模型包含了间隙、阻尼等多种非线性特征,难以通过解析的方法获得。为满足伺服系统的研制与生产的需要,负载模型的辨识至关重要,它被用来模拟系统工作过程中伺服系统的负载情况,主要包括惯性负载、弹性负载、摩擦负载和常值力矩[6-11]。

本文通过对负载及负载效应进行试验辨识,分析了机电伺服系统在低频模态负载状态下极限环结构谐振的机理及预防措施。

2、机电伺服系统在负载状态下的模型辨识

机电伺服系统与液压伺服系统原理基本相同,其中,机电伺服系统通过控制电流的大小和方向实现对伺服电机的控制,并通过一定减速机构将高转速低扭矩的伺服电机的运动转化成大扭矩、低转速的运动。根据系统综合设计,测量转角并参与闭环反馈的传感器没有安装在整个运动链路的最后一级上,而是安装在伺服系统的运动输出界面上,因此,伺服对发动机的推力矢量控制在全局层面是一个半闭环的控制回路,其基本结构如下图所示。

图2 负载状态机电伺服系统基本控制结构

以某带有小型液体发动机负载的机电伺服系统为例,伺服系统输出轴与发动机负载力学模型如下图3。

图3 某型伺服系统负载动力学模型

负载力平衡方程为:

其中, JL 为等效负载转动惯量; Ksr为等效负载刚度;TL为负载力矩,根据液体发动机的特点,负载力矩构成复杂,包含摩擦力、科氏力、推力偏斜造成的附加力矩等主要因素,与摆角相关性不大,为简化模型,按恒值考虑;Bp为等效负载阻尼。

对上式进行Laplace变换,得

由上式可知,伺服系统负载是典型的二阶环节,其谐振频率为,阻尼比为,因此,负载模型主要由负载等效刚度、负载转动惯量、负载等效阻尼三个物理量决定。负载转动惯量可通过计算得出。负载等效刚度取决于传动环节的传递刚度、间隙及结构本体的安装刚度。负载等效阻尼与润滑、摩擦等密切相关,为非线性。负载等效刚度和阻尼在工程上难以通过解析的方法得出,需进行试验辨识。伺服系统在低频模态负载状态下出现的极限环结构振荡和失稳现象,是典型的闭环控制系统处于临界稳定状态。通过模态分析实验,可以确定被控制对象或系统中各环节特性。

为此,将系统固支安装在固定基础上,对伺服系统施加正弦扫描信号,幅值为1º,频率依次由2Hz到30Hz。测量从伺服系统的运动输出界面到发动机喷管终端的各传动环节响应,计算在指令输入下的频率特性。以伺服系统自身的位移反馈信号(即传统意义上的线位移)为输入对下图中测点1~6的响应进行频率特性测试。

图4 固支安装状态试验测点示意图

测点位置:1.销钉前端;2.端面齿曲柄前端;3.常平架与作动器连接处;4.鼠笼与转轴连接处;5.鼠笼上端;6.发动机喷管尾部

通过以上方法,得到了以线位移为输入,从伺服系统输出到发动机运动终端各个传动链路上的响应特征,并匹配负载模型参数,得到伺服系统负载模型如下图5。

图5 负载拟合

负载效应是伺服系统在真实负载状态下,负载对伺服系统闭环内部进行的反作用,对于该伺服系统的负载效应进行测试,按照闭环传递函数求开环传递函数公式G(S)=Φ(S)/(1-Φ(S)),由闭环动态特性测得计算出开环动态特性。在其它外部状态完全一致的情况下分别在伺服系统无载和负载情况下测得开环特性,后用负载的开环特性减去无载的开环特性,得出负载效应,最后对负载效应结果进行计算和拟合,得出负载效应模型,结果如下图6。

图6 负载效应拟合

分析可得伺服系统的负载模型和负载效应模型如下表1,其中,机电伺服系统的数学模型在伺服电机、驱动器、减速器、控制算法已知的情况下易通过解析方法获得,本文不再赘述。

表1 负载及负载效应传递函数拟合

3、极限环结构谐振机理

为分析极限环结构谐振的机理,首先从线性系统稳定性裕度方面计算其开环稳定裕度,使用上述数学模型,在开环情况下进行频率特性测试和仿真,得到开环波特图如下图7。

图7 理论的开环波特图

经开环稳定裕度的计算,得出该伺服系统满足线性系统稳定性判据,具备足够的稳定性,为进一步分析极限环结构振荡问题,在闭环状态下,将动态特性分析点设置在发动机喷管角位移上,进行1°动态特性仿真,得到闭环角位移动态特性曲线如下图8。

图8 闭环角位移动态特性曲线

可以得出闭环动态特性出现约+8dB的振荡峰,而此时的相位约-180°,系统容易出现振荡。

通过以上理论分析,判断出导致伺服系统在安装到发动机上后出现极限环结构振荡是闭环系统在-180°相移时出现正振荡峰所致。虽然小信号情况下系统是稳定的,但在传动间隙和功率饱和等非线性环节的综合影响下易出现非线性极限环,而极限环的出现与伺服系统本身的高增益和负载谐振频率较低有关。

4、负载模态及结构优化措施

负载谐振频率和负载阻尼与极限环结构谐振密切相关,当然也可以在伺服系统控制策略上进行优化,比如适当降低增益、加入陷波算法等,但后者以降低伺服系统动态性能为代价的,当负载谐振频率与伺服系统自身带宽接近时,动态性能的损失大。增大负载阻尼虽然削弱了谐振的峰值,但在低频时大的负载阻尼会带来较大的相位滞后,又需提高控制增益来弥补。因此最有效的方法是提高负载谐振频率,使谐振频率出现在伺服系统大幅度衰减的频段。

提高负载谐振频率一般有如下三种途径:提高负载和传动环节刚度;降低传动环节间隙;降低负载转动惯量。

5、试验结果分析

本文采取提高传动环节刚度的办法将负载谐振频率由81rad/s提高到100rad/s,得到负载闭环角位移动态特性曲线,如下图9。

图9 负载刚度提高后角位移闭环动态特性

可以得出,传动环节刚度提高后,角位移闭环幅频特性在0dB以下,因此表现为系统稳定。后又将低刚度和高刚度伺服系统分别安装到发动机上,对发动机喷管引入外部激励以进行对比试验,对比试验除刚度不同外,其它完全一致,试演中两种状态的反馈曲线如下图10、图11。(下图纵坐标单位为V,0.1V对应摆角为0.2°)。

图10 低刚度外部激励谐振曲线(纵坐标V,横坐标s)

图11 高刚度外部激励稳定曲线(每通道2次)(纵坐标V,横坐标s)

可以得出,在引入外部激励状态下,低传动刚度伺服系统出现持续的谐振,高传动刚度伺服系统未出现震荡(图中的一次波动是由于外部激励引起的正常偏摆)。

6、结束语

本文以发动机推力矢量机电伺服系统为应用对象,研究了机电伺服系统在低频模态负载状态下发生极限环结构谐振的机理,通过辨识的方法建立了推力矢量机电伺服系统负载模型和负载效应模型,在仿真与试验的基础上,探讨了机电伺服系统在低频模态负载状态下发生极限环结构谐振的根本原因,并提出了避免结构谐振的预防措施。结果表明:通过辨识的方法能有效并准确的得出机电伺服系统负载模型和负载效应模型;通过提高系统的负载谐振频率,能在不损失伺服系统动态性能的情况下,有效地使极限环结构谐振现象消失,保证系统的稳定工作。

全文见《伺服与运动控制》

2018年第六期

本文转自:如何提高伺服系统负载谐振频率,消失极限环结构谐振现象?

点击这里,获取更多工业自动化技术信息

点击这里,获取更多电机控制设计信息

围观 13
32

如何正确看清变频和伺服的区别?五大点!

selina的头像

21世纪以来,随着工业4.0、中国智造2025的兴起,工业控制上经常会提出这么一个疑问:“伺服和变频两者之间,究竟有什么不同?” 那么接下来,小编将从以下几个方面来进行比较。如有讲解不到位的,还请各位看官多多包涵。

01、从定义看

首先,从定义上来说,变频器是利用电力半导体器件的通断作用将工频电源变换成另一频率的电能控制装置,能实现对交流异步电机的软启动、变频调速、提高运转精度、改变功率因素等功能。

变频器可驱动变频电机、普通交流电机,主要是充当调节电机转速的角色。

伺服系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制的非常灵活方便。

伺服系统按所用驱动元件的类型可分为机电伺服系统、液压伺服系统和气动伺服系统。最基本的伺服系统包括伺服执行元件(电机、液压缸)、反馈元件和伺服驱动器。若想让伺服系统运转顺利还需要一个上位机构,PLC、以及专门的运动控制卡,工控机+PCI卡,以便给伺服驱动器发送指令。

从定义区分

总的来说,其两者在定义上的区别主要概括为一句话:变频器是以速度控制为目的,而伺服则是以位置控制为目的。

打入行开始就总是会听到有人谈论“伺服和变频之间的区别”,不过我一直觉得,将他们放在一起比较其实是不够严谨的,正如票圈中汉斯总的一段评论所说:

变频其实是指电力传动的工作方式和结构原理,而伺服强调的是控制性能和应用结果,二者并不是同一个范畴内的概念。

如果真的要把他们放在一起比较的话,或许用“同样采用变频驱动技术,交流伺服与一般的变频(电机)驱动系统相比有哪些特别之处”这样的提法会显得更合适些。

而要了解这一点,我们首先还是要来看一下这二者分别面对着怎样的应用对象和场景。

一般的变频驱动系统,解决的是为设备机电系统提供机械传动所需动力的问题,用以驱动负载产生速度、压力,有时也会用于实现简单的位置控制;而伺服系统的目的则是为了给系统提供高动态、高精度的位置、速度或转矩/力的控制。正是这种在应用对象上的巨大差别,让这两种“变频驱动”系统在很多方面都表现出极大的差异。具体来说,可以从以下几个方面进行比较:

控制接口

普通变频驱动系统对于速度、压力、位置...等应用对象在指令更新的时间精度上往往并没有太高的要求,这当然与其相对较低的应用精度有很大的关系。新的控制指令数据早晚几个毫秒送达,对驱动性能的影响几乎可以不用考虑,输入指令的刷新周期出现个几毫秒甚至几十毫秒的偏差,基本上也是可以接受的。因此,我们可以看到以往的变频器通常会采用模拟量或者现场总线作为其控制指令的输入端口;而尽管现在以太网技术在变频器产品中已经越来越普及,但却也很少有使用实时以太网的。

而伺服系统就不同了,较高的控制精度要求其必须将每次指令更新的时间刻度精确到微妙级,并能够以极为确定的时间周期进行实时的数据交互。否则,失之毫厘便会谬以千里,无法达到所需的运动控制性能。这就是为什么长期以来,伺服驱动器都需要使用高频脉冲串和专用运控总线作为控制输入的一个重要原因;而如果要将以太网作为伺服驱动的控制端口,则必须采用具备时间确定性的实时以太网技术。

动态特性

在自动化应用中,只要是闭环控制系统,就需要能够在一定的时间窗口内对应用负载端的动作偏差作出反应并及时调节,变频驱动如此,交流伺服也是一样。但由于伺服系统常常需要应对较高的控制精度,须能以更快的速度对更加细微的误差作出响应,因此其响应调节的时间周期也就必须更短,通常都得是毫秒甚至微秒级的。与此相对应,很多伺服产品的速度频响带宽(BandWidth)都能够达到 kHz 级别。而反观一般的变频驱动产品,这个频响带宽往往也就在几百 Hz。

应用反馈

要能够及时响应应用端的动作误差,自然离不开来自负载侧的速度和位置反馈。正如前文中所述,系统中是否有用于实现控制的面向应用对象的反馈机制,是伺服区别于一般的电机传动技术的一个重要标志。同时,还是因为在控制精度和响应速度上的高要求,伺服应用的反馈往往需要具备极高的测量精度和分辨率,以做到对包括速度、压力、位置...等在内的应用对象的任何细微动态变化都足够敏感,在这种情况下,几千线的电机反馈,其实已经很难满足伺服应用的性能要求了。

当然,现在通用的变频驱动系统采用闭环反馈的控制方式也已经很普遍了,但总的来说,它们对应用端反馈在测量精度和分辨率等方面的各项要求远不如伺服运控系统那么高,并且多以速度反馈为主,很多时候,简单的 PG 反馈也就足够了。

运行模式与控制方式

运行模式指的是系统所要控制的应用对象类型是位置、速度还是转矩。从这个角度看伺服系统大都还是以位置模式为主的,有时会根据应用需求切换到速度或转矩模式;而对于一般的变频系统来说,主要就是速度和转矩模式了,少数变频产品会有一些简单的位置模式可供选择。

控制方式说的是在实现对某个应用对象的控制时,采取怎样的方法。这个,在伺服系统里,基本就只有矢量控制了,显然,这是由伺服应用本身所要达到的控制精度决定的。而在通用的变频系统中,为了能够满足不同类型和级别的应用需求,可供选择的控制方式就有很多,比如:电压/频率(v/f)、直接转矩、矢量控制...等等。

这一点也再次印证了我们之前所说的,伺服和变频其实是两个不同范畴的概念,伺服强调的是控制性能和应用结果,所以在系统配置时更关注运行模式;而变频其实指的是电力传动的工作方式和结构原理,因此在使用时会更看重控制方式。

适配电机和动力执行机构

为了能够达到较高的控制精度和应用性能,伺服运控系统对配套电机和执行机构的选择通常会有着极为严格的要求。

这不仅仅体现在永磁同步电机的使用上,还包括对适配电机各项规格的制定和设计以及不同类型的电机执行机构的选择方面,例如:

须根据负载和运行曲线,基于堵转转矩(力)、峰值转矩(力)和额定速度选择电机,并匹配机械传动速比;
更低的转子惯量用于提升动态性能、中/高惯量用于提升控制的稳定性;
专用电气连接端口,以提升系统的 EMC 电磁兼容(抗干扰)性能;
不同类型机械动力输出的连接方式(如:标准输出轴、空心轴、法兰输出...),以适应不同类型的应用负载;
多种电机和动力执行机构选项(如:直线电机、直驱电机、集成减速机电机、直线电动缸...),以满足各类运控应用的性能需求;
...

大部分伺服厂商往往会推荐用户使用其标配的驱动和电机/执行机构(甚至电缆和连接器)产品组合,很大程度上也是出于确保系统性能的角度所考虑的。(当然,竞争的排他性也正在于此。)

而这些苛刻的要求在一般的变频系统中就不多见了。大部分的通用变频应用都会采用异步电机(有些应用会使用永磁同步电机,多数是出于节能的角度考虑),选型时需要考虑的主要就是功率、额定转速和工作制...等等;除此以外就是基于应用环境,选择电机的防护等级、冷却方式、安装方式...等等。而对于电机惯量、电气连接、输出方式...等方面,就没有太过严苛的要求,同时厂家基本上也不会用所谓的“配套组合”来限制用户对于电机品牌的选择。

功率范围

此外,由于伺服所面对的往往是那些要求高精度、高动态响应的应用环境,因此总体负载也会相对较轻,其总体输出功率的范围一般也就在几十千瓦以内,比起以动力传动见长的变频驱动系统来说会小很多;而那些负载较重的运控应用,通常都并不会有过高的响应特性需求,一般来说异步变频也是可以满足要求的。

上述伺服和变频的技术比较,更多其实还是侧重在应用的角度来看待它们二者之间的差别,而并没有涉及到太多关于产品本身的部分,比如:三环的差异、内部结构和组成元器件的不同、过载能力的差异...等等。有关这些内容,我会在后面的推文中和大伙儿慢慢探讨。

本文转自:伺服和变频到底有啥区别

点击这里,获取更多电机控制设计信息

围观 10
855

伺服系统广泛用于机床工具、纺织机械、印刷机械、激光雕刻机等传统OEM行业。机器人、机床、电子半导体以及风电太阳能等新能源对交流伺服的需求增长较快,不同细分领域的竞争格局差异较大。现代交流伺服系统最早被应用到宇航和军事领域,比如火炮、雷达控制等,后来逐渐进入到工业领域和民用领域。

1. 电子机械
由于中国逐渐发展为制造业大国,在电子行业尤其如此,中国已经成为各类消费电子产品如电视、手机、电脑等的世界制造工厂。因此产生了大量电子产品加工机械的需求。自动邦定机、固晶机是其中发展较快的两类产品。这两类机械通常一台机械配有3~6轴伺服,有些厂家一年就可生产上千套机器,因此对伺服产品需求量巨大。但这两类机械通常要求伺服快速、定位精度要求非常高,这就要求伺服产品具有小功率、小惯量、高精度的性能,适用伺服产品的功率范围一般在1KW以下,但精度通常要求达到17位编码器反馈。集成电路封装机、自动点胶机也是电子行业发展较快的分支产品,但对伺服精度要求较低,通常11位编码器反馈即可。目前此行业中松下伺服产品得到广泛应用。

2. 检测试验机械
在OEM行业,最终用户对机械生产产品质量要求越来越高,因此也产生了一类新的设备,即对产品质量的检测或试验设备。此类设备中对伺服有大量需求的机械有材料试验机(用于生产出的材料测试)、飞针测试机(用于对电子线路板质量测试)、光学检测设备等机械。这类设备对伺服的要求通常功率在5KW以下,位控精度要求较高,目前此行业中,安川伺服产品得到广泛应用。

3. 风力发电
2016年中国风电并网装机超过1.49亿千瓦,居全球首位。作为后起之秀,2005年中国风电总装机占全球装机仅为2.0%,仅仅十年时间中国风电累计装机占全球装机比例已达25.9%。风电的迅速发展不仅向中国各地输送了绿色清洁能源,同时也催生了中国风电产业链的繁荣发展。风电开发要实现大中小、分散与集中、陆地与海上开发相结合,通过风电开发和建设,促进风电技术进步和产业发展,实现风电设备制造自主化,尽快使风电产业具有市场竞争力,力争2020年我国风电技术达到世界领先水平。在“三北”(西北、华北北部和东北)等风资源富集地区,建设大型和特大型风电场,同步开展电力外送和市场消纳研究。发展海上风电,坚持海洋规划先行,避免无序发展。坚持统一规划,加快制定相关政策措施,促进低风速地区资源开发,因地制宜地建设中小型风电场,采用低速风机,就近上网本地消纳。在偏远地区,因地制宜发展离网风电。规划2020年风电装机总量为1.8亿千瓦。伺服系统主要应用于风机变浆系统,路斯特伺服产品由于针对风电行业单独定制,因此在风电行业被广泛使用。
4. 包装机械
包装机械行业对于伺服产品是潜力非常大的行业市场。2016年包装机械行业工业总产值同比去年增长1.6%。金融危机从某种程度上算得上是我国包装机械行业的利好消息。因为在宏观经济不景气的态势下,国外的包装工业企业为了节约成本,纷纷采用较为廉价的中国设备来替代发达国家的昂贵设备。那么全球经济的逐步回暖,我国包装机械自动化水平不高的劣势将显露无疑。因此,提高产品的自动化程度已经成为我国包装机械行业的当务之急。国内厂商可多关注出口较多的包装机械企业,寻求新的市场突破口。

供稿:睿工业
全文见《伺服与运动控制》2018年第二期

本文来源:四大伺服系统新兴市场以及趋势分析

点击这里,获取更多电机控制设计信息

围观 30
1289

伺服是目前工业制造领域一种十分常见的技术,我们之前也已经谈的比较多了。可是话说,到底什么是伺服呢?本期,咱就来简单的聊一聊。

伺服 Servo 这个词来自拉丁文 “servus”,意思是仆人按照主人的指示行事,并且忠实而快速地工作。

而 Servo 作为一个技术名词,我比较认同的定义大致是这样的:
a device used to provide control of a desired operation through the use of feedback
通过使用反馈来为所需的运行操作提供控制的设备装置

从上面这段描述中我们可以看到,伺服首先是一种控制装置,需要有指令输入和动力输出。

由于需要对运行动作进行控制,其输出的就应该是机械动力。因此,伺服其实本质上是一种用于运动控制的动力传动技术。如果按照所使用的动力类型的不同,我们基本上可以把伺服分为:气动伺服、液压伺服、直流伺服和变频伺服...等。

不过,由于近些年来变频驱动技术的发展成熟,加上其在很多方面表现出来的极佳的应用体验,如:体积较小、使用灵活、易于集成、方便维护...等等,变频伺服已经在大量应用中取代了其他类型的伺服技术,逐渐成为工业运控领域的绝对主力。这就是为什么现在大家只要提到伺服,基本上指的就都是变频伺服。

伺服的输入为与运行动作需求相对应的一系列动态控制指令,如:速度、位置或转矩...等等。之所以说这些指令是动态的,是因为在实际应用中,目标对象往往需要在运行过程中根据工艺要求不断改变其位置、速度、转矩...等动作状态。因此伺服产品往往需要有一个或多个实时控制信号输入端口,如:脉冲输入、模拟量输入或数字通讯输入...等,用于从上位控制器接收连续的运动控制指令。

这些指令可能是控制器中已经规划好的运动曲线在各个时间点上的值,也有可能是基于其他运动轴状态实时计算出来的中间变量(如:主轴...),但不管怎样,伺服的任务就是要让其最终控制对象的动作轨迹尽可能的与给定的运行曲线相吻合。

我们需要特别要注意伺服定义中“使用反馈”这几个字。尽管在伺服与普通传动技术(例如:变频)之间并没有一道非常清晰的界限,但在系统中是否有用于实现控制的面对应用对象的反馈机制,却是其区别于一般的气动、液压和电机传动技术的一个关键标志。

伺服的反馈主要是指那些用于检测动力执行机构速度和位置...等动作状态的传感元器件,例如:旋转编码器、直线光栅尺...等等,并且通常这些反馈元件都会被直接整合到伺服产品的控制环回路中,如:大部分伺服电机内部都集成了反馈编码器、以及通常伺服驱动器也都会将反馈接口卡作为其产品的一项标准配置。

伺服系统需要借助这些反馈元件即时获取控制对象的位置、速度...等运动状态,并将其与输入端给定的目标值进行实时比对,然后依据反馈误差的大小快速调节其动力响应输出,从而让系统的运控性能更加接近其工艺所需要达到的应用指标。

而对于伺服而言,我们在这里所说的“快速响应”,通常指的是毫秒甚至微秒级的,这样系统才能够在极短的时间窗口内对那些细微的动作偏差作出反应并及时调节。因此,绝大多数伺服产品都会用频响带宽值(BandWidth)来标称其响应能力。而我们看到在印刷套色、金属加工、数控机床、木料加工、纸张处理......等各类高性能运控应用中都会使用伺服技术来实现精确的位置控制,就是伺服响应能力的一种体现。

不过,伺服的这种实时响应能力不仅仅适用于高精度的位置控制,很多有着较高动态特性要求的应用领域,如:机器人、风电变桨、贴标套标、包装码垛、阀门控制...等,也都会用到伺服技术。在这些应用中,真正的挑战往往并不一定是定位精度(一般毫米级就都足够了),而是如何在高速运行过程中,克服来自负载、环境和自身...等多方面的各种扰动,并确保动作的姿态和节拍达到设备运行的工艺要求。

此外,在很多非位置控制领域中,我们也能够看到不少伺服技术的应用,这同样是因为其较强的闭环响应能力。例如:一些设备在薄膜材料(如:纸张、塑料、电池...等)的张力控制上,就用到了伺服系统在速度、转矩方面具备的高动态响应和快速调节的特性;再比如:现在很多空压机和液压泵站也已经开始在使用伺服技术,以实现对气体和油路压力的灵活控制...

伺服技术在工业领域的应用,其商业驱动力源于制造企业在追求生产效益时,对产品质量和设备自动化流程提出的越来越高的要求;而其能够在最近二十几年间从航空航天、数控机床、半导体、机器人...等少数专业领域逐步普及到各类通用自动化行业,则很大程度上得益于因技术成熟和产品易用性的提升而带来的系统综合成本的优化,尤其是我们之前提到的变频驱动技术的发展,在其中起到了极为积极的作用。

本文来源:伺服是什么?

点击这里,获取更多电机控制设计信息

围观 38
1118

伺服电机是影响机器人工作性能的主要因素,也是我国机器人产业需要突破的关键短板之一。《中国制造2025》规划总体部署了机器人伺服电机的目标:到2020年,性能、精度、可靠性达到国外同类产品水平。

01 伺服机器人市场

伺服电机作为控制系统中的执行元件,是机器人三大核心零部件之一。机器人伺服系统由伺服电机、伺服驱动器、指令机构三大部分构成,伺服电机是执行机构,就是靠它来实现运动的,伺服驱动器是伺服电机的功率电源,指令机构是发脉冲或者给速度用于配合伺服驱动器正常工作的。

2015年,我国机器人用伺服系统市场规模约为10.6亿元,到2020年市场规模将达47亿元左右,未来五年复合增长率约为35%。

国内外伺服系统厂商将机器人市场作为未来重点的发展方向,伺服电机一般安装在机器人的“关节”处,机器人的关节驱动离不开伺服系统,关节越多,机器人的柔性和精准度越高,所要使用的伺服电机的数量就越多。

机器人需求在全球范围内不断扩大,而中国现在是全球增速最快的机器人市场。2013年至2016年,中国连续三年成为全球第一大工业机器人消费市场。IDC预测到2020年,中国机器人市场规模将达到594亿美元,中国市场将占全球机器人市场总量的30%以上,市场空间巨大。机器人的高速增长将带动伺服电机的巨大需求。

02 机器人伺服电机面临挑战

伺服电机在自动化控制系统在往往与终端执行机构相连,因此也被成为执行电机。伺服电机在伺服系统中作为执行元件,其作用是将伺服控制器的脉冲信号转化为电机转动的角位移和角速度。

伺服电机分为直流和交流伺服电动机两大类,与普通电机相比其主要特点是,其通常搭配反馈装置一起使用,实现精准控制。

伺服机器人分类:

为了提高工业生产的灵活性,机器人正变得越来越轻,同时为了保证机器人的动态和精度,高功率密度伺服电机至关重要;在精加工作业领域,机器人甚至需要人手所具备的柔顺性,要求电机能以“罐头”大小实现高性能,提高生产质量和效率并保证操作员安全;在医用机器人领域,为了让机器人帮助患者早日恢复健康,对电机稳定性和可靠性提出了至高要求。

机器人对伺服电机的高要求主要有以下方面:

1.要求伺服电机具有快速响应性。电机从获得指令信号到完成指令所要求的工作状态的时间应短。响应指令信号的时间愈短,电伺服系统的灵敏性愈高,快速响应性能愈好,一般是以伺服电机的机电时间常数的大小来说明伺服电机快速响应的性能。

2.伺服电机的起动转矩惯量比要大。在驱动负载的情况下,要求机器人的伺服电机的起动转矩大,转动惯量小。

3.伺服电机要具有控制特性的连续性和直线性,随着控制信号的变化,电机的转速能连续变化,有时还需转速与控制信号成正比或近似成正比。

4.为了配合机器人的体形,伺服电机必须体积小、质量小、轴向尺寸短。

5.能经受得起苛刻的运行条件,可进行十分频繁的正反向和加减速运行,并能在短时间内承受数倍过载。交流伺服驱动器因其具有转矩转动惯量比高、无电刷及换向火花等优点,在工业机器人中得到广泛应用。

03 差距明显,国内厂商需努力追赶

国内伺服电机市场中,前三名松下、三菱、安川均为日系品牌,总份额达到45%,西门子、博世、施耐德等欧系品牌主要占据高端市场,市场份额在30%左右,国内企业整体份额低于10%。

国产伺服电机大多是仿制日系伺服电机设计,功率多在3kw以内,以中小功率为多,而5.5-15kw的中大功率伺服电机则比较少。

国产伺服电机在以下方面仍需突破:

一是外形普遍较长,外观粗糙,很难应用在一些高档机器人上面,尤其是在轻载6kg左右的桌面型机器人上,由于机器人手臂的安装空间非常狭小,对伺服电机的长度有严格要求。

二是信号接插件的可靠性需要改进,而且需要朝小型化、高密度化以及与伺服电机本体的集成设计的方向设计,方便安装、调试、更换。

三是另一个核心技术就是高精度的编码器,尤其机器人上用的多圈绝对值编码器,严重依赖进口,是制约我国高档机器人发展的很大瓶颈。编码器的小型化也是伺服电机小型化绕不过去的核心技术。

四是缺失基础性研究,包括绝对值编码器技术、高端电机的产业化制造技术、生产工艺的突破、性能指标的实用性验证和考核标准的制定。

五是伺服系统各部分产业协同联合不够,导致伺服电机和驱动系统整体性能难以做好。

虽然国产伺服电机在市场上的比重比较低,在技术与性能上与国外品牌有较大的差距,并且产品质量与稳定性也不能同国外品牌同日而语,但近几年国产品牌伺服电机的发展也很迅速,伺服电机自主配套能力已现雏形,获得了一定的市场认可。

许多国产产品技术上与日系产品接近,涌现出埃斯顿、广州数控设备、英威腾等20余家较大规模的伺服电机品牌。

从我国伺服电机专利技术总体申请量变化趋势也显示出国内企业近几年取得的成绩。2010年我国伺服电机行业相关专利申请数量仅2697项,而2016年我国伺服电机行业相关专利申请数量达14058项,年复合增长率高达31.68%。

2010-2016年伺服电机行业相关专利申请数量变化图(单位:项)

中国机器人产业处于大的变革时代,需要快速创新整合,机器人作为一种高新技术,是推动产业发展的重要支持手段。而要大力发展机器人产业,作为机器人核心零部件之一的伺服电机自然成了许多企业竞相布局的热门领域。

总结:机器人的工作表现受伺服电机影响极大,因而精密伺服电机的关键性能指标永远都是先进性比较的首要因素。国外先进伺服电机已经能够很好地适应绝大多数应用的需求,其研发资源已集中在个别高端应用及整体性能提升方面,处于精雕细刻阶段。因此国产伺服电机厂商任重而道远。

本文转自:「趋势」机器人驱动离不开伺服系统,国产机器人需补“短板”

点击这里,获取更多电机控制设计信息

围观 20
665
订阅 RSS - 伺服