物联网

随着大中型城市发展迅速,汽车保有量持续增加,社会现有停车资源已经远远满足不了市民对停车位的需求。有关数据显示我国停车场平均车位利用率仅为30%,越大型的停车场利用率则越低。

解决停车难,俨然成为困扰社会各方的难题,也成为各界关注并致力解决的焦点。

“物联网+停车场”依托物联网和云计算技术、无线通信技术、计算机网络技术等先进手段,结合云停车服务平台,可以将各停车场互相错开使用,充分利用城市闲置资源,对解决停车难无疑是一个。

物联网助力提高停车效率

所谓“物联网+停车场”,即智慧停车,简单来说就是将自动化技术应用于城市停车位采集、管理、查询、预订与导航服务,使停车位资源利用率最大化、停车场利润最大化和车主停车服务最优化。同时,智慧停车在错时停车领域也有不错的表现,政府鼓励周边商业办公类建筑与居民区共享利用停车泊位,并引导企事业单位、公共机构内部停车场对外开放,同时也允许个人停车位错时出租并取得收益。智能停车还可以帮助城市减少拥挤和污染,在智慧停车的帮助下,车主不再需要开着车来巡回地寻找停车空间。

此外智慧停车还能帮助车主寻找自己的车,只需在停车场内的查询机或者二维码扫描等方式,输入车牌号码,就能快速获得停车位信息和电子地图显示。停车场缴费也将变得很方便,无论是pos机、停车场自助缴费机还是手机移动支付、二维码支付都可以来完成。智慧停车场采用物联网给技术,将直接改善城市公民生活质量。

智慧停车中有哪些物联网技术?

我们可以将智慧停车划分为城市级、场库级和车位级来阐释。接下来智慧停车中的物联网技术则分别从这三个层级来谈论。

在城市级,停车设备数据通过物联网方式上传到城市平台,政府城市级云平台与停车企业云平台进行线上对接,获得停车场地数据,形成全城停车场“一张网”格局,提供线上公益性服务,便于大众查到停车位,还可以解决部分停车用户“逃单”问题。其主要应用了NB-IoT技术和LoRa技术。

NB-IoT技术和LoRa技术:今年兴起的NB-IoT技术和LoRa技术就是城市级智慧停车所应用的技术,NB-IoT技术利用窄带通信功耗低、覆盖广、密度高优势,使停车设备直接联网,地磁、地锁、充电桩、道闸可以把信息源源不断传输到网络平台。LoRa技术则在近年形成了行业规范和共同平台,可以使小区联网组成大网络。

场库级应用场景包括停车场、停车库、路侧停车等,其主要运用了RFID、车牌识别技术和不停车电子收费(ETC)技术。

RFID:引入RFID技术,利用其无需人工干预自动识别的特点,可以实现停车场智能化出入管理,改变传统停车场进门停车取卡、出门交卡缴费引发的出入口通行效率低下问题,提升通行效率。

车牌识别技术和不停车电子收费(ETC)技术:这两个物联网技术主要是场库级智慧停车用到的技术。车牌识别技术利用摄像头拍摄车牌或ETC以准确识别车辆身份,记录车辆进出场时间以准确收费,使车辆快速通过,无需停车进行人工记录。值得一提的是,ETC技术是智慧停车道闸领域近年获得迅速发展的重要技术。不过,近年明星级“垂直循环型”立体停车库,核心技术仍是一种机械技术,智慧化控制仍采用传统PLC控制。

车位级则有智能车位锁技术、地磁技术这两种技术。

智能车位锁技术:通过蓝牙技术控制车锁升降,车锁升起,车辆无法进入停车位,车锁降下,对应车辆驶入。

地磁技术:即利用无线传感器技术来识别大地磁场,一旦感应有车辆驶入,便开始计费。这要求在每一个停车位中,都必须安装一组传感器。这些传感器将数据实时上报给附近司机,以便司机在最短时间内找到可用停车位。在这种情况下,就要求这些电池供电的传感器具有远程通信能力,并且提供非常精确的精度,同时还需要将误报率降到最低。

结语

智慧停车是为了解决城市停车难题,由此可见智慧停车是城市重要组成部分,它的基础是停车场高效管理,发展动力是汽车后市场生态打通,最终目标是车位共享经济升级。另外,智能停车系统还可以将景区、市政等公共停车场及个人闲置停车位资源汇集,形成较大产业规模,带动产业良性发展。据测算,我国静态停车收费市场规模约5000亿元,尚处于信息化初级阶段,未来停车场将由车位信息实时共享,向智能停车系统演进,并最终纳入城市智慧交通体系。

点击这里,获取更多IOT物联网设计信息

围观 5
409

物联网(IoT ,Internet of Thing)已与主要网络攻击产生关联,通常涉及滥用易受攻击的连网装置 (例如监视摄影机),以协助进行恶意活动。当然,各界已对物联网是否能确保联机至庞大互联网的数十亿部装置的安全感到疑虑,并要求提供可行的解决方案以填补此安全缺口。此时登场的是区块链,它是相对较新的技术,可望降低透过中央机构入侵物联网装置的风险,同时提升物联网实作的扩充性。原则上,它可透过多种方式保护物联网网络,例如针对异常网络行为形成群体共识,以及隔离未依规定运作的任何节点。

两个关键促成要素合二为一:当物联网遇上区块链

在数十年之间,物联网已大幅扩展并连接各种装置与网络,包括住家、工作场所、运输系统,甚至整座城市。另一方面,已问世十年的区块链将透过其加密及分布式分类账 (以建立可防止窜改的实时记录),为商业模式带来革命。透过物联网与区块链的协同运作,预期后者可为前者的装置与程序提供可验证且安全的记录方式。

区块链以分布式分类账运作,将会记录数据的每个删除或修改动作,随着更多数据 (区块) 的加入,将建立更长的事件链。进行的每笔交易皆附带数字签名,而且永远无法变更或删除。由于区块链去中心化的特性,理论上可防止易受攻击的装置推送假信息及破坏网络环境,无论是智能家居或智能工厂。

在一件最近发生且值得注意的物联网安全事件中,区块链可降低分布式阻断服务 (DDoS) 攻击的风险,这些攻击会同时影响多台装置:一台装置中断不应影响其他装置。我们在保护智慧城市安全中注意到这个问题,此种权宜措施对于维持服务中的联机与功能而言非常重要,特别是关键系统。

使用区块链,每个装置都将具备强大的加密功能,进一步确保与其他装置通讯的安全,并可在最重视隐私的物联网使用案例中提供匿名性。采用者将可更妥善地追踪装置及发布安全更新,协助强化潜在易受攻击的装置。

区块链:安全与 IOT(物联网)之间的必要环节?

图 1:物联网中的区块链:潜在利益

区块链与物联网的结合预期也能解决监管问题。例如,企业中由多个来源进行的交易,可透过不变且透明的记录进行管理,在整体供应链中追踪数据与实体商品。万一发生错误决策或系统过载,区块链记录应能识别出问题点 (例如装置或传感器),企业就能立即采取行动。区块链亦有助于降低营运成本,因为它无需中介或中间人。

|| 物联网的区块链实作与使用案例

区块链不仅是做为加密货币 (最值得注意的是比特币) 基础的分布式分类账。事实上,它已用于不同产业,包括零售业,以简化及确保产品在供应链中移动的安全性,而在制药业则用于确保合约、临床试验及药物本身的完整性。借助将区块链整合至上述及其他产业,即可密切监控产品与服务的质量水平。

在物联网领域中,区块链也越来越受到欢迎。有家公司已开始提供用于工业物联网 (IIoT) 的区块链保护安全平台。此解决方案被誉为第一且唯一的解决方案,其目标是让更多参与者来控制共识,并提高系统的备援能力,以解决物联网广大的攻击面。以区块链为焦点的研究中心也已成型,以促进此技术的发展与商业化,以及革新物联网生态系统的能力。

|| 将区块链整合至物联网的挑战

物联网中的区块链确实正在快速发展,但并非没有障碍。首先,区块链的关键概念是一系列已完成的交易,以及它们形成链的方式。此链是保留过去交易的参考数据而建立的,然后形成区块。但是,建立区块需要大量运算,需要多个处理器与大量时间才能产生。由于要产生一个区块是很困难的,要窜改它也同样困难:窜改者必须窜改前一个区块,并遵循已建立的链,才能彻底变更它。
这种机制似乎是保护物联网安全的理想选择。但是,必须注意的是物联网装置的运算能力相对不足,而底层区块链通讯协议将带来开销流量,并产生可能带来延迟的区块。上述情况对于资源有限且带宽受限的装置,以及需要实时更新或快速响应的运作而言,都不是一个好兆头。

在安全风险方面,研究人员已将与可存取性、匿名性以及身分验证与访问控制相关的威胁进行分类。恶意行为者可能会透过阻断服务 (DoS) 攻击和云端储存入侵等手段,导致用户无法存取数据或服务,对可存取性造成威胁。此外,他们也能搜寻用户的匿名交易与其他公开信息之间的链接,尝试识别特定的使用者。他们也会尝试以合法用户身分来获取数据,但系统可以侦测到身分验证与访问控制的威胁,因为所有交易都会由区块链中的用户记录及验证。

另外,我们在今年的安全预测中,预测区块链将被威胁行动者用来扩展其逃逸技术。推测物联网传感器与装置可能会因为向区块链传送错误信息而受到威胁,也不无可能。透过此技术,如果一笔数据通过认证,就会被记录在区块链中。因此,采用者需确保传感器与装置在遭到入侵时,做好覆盖的准备,并且仅将访问权限授予负责控制的使用者。

|| 安全建议

在正常运行时,区块链可借助降低成本与提高效率,为物联网系统带来极大好处。即使如此,此技术在物联网环境中的渗透程度距离最佳状态仍有一段不小的距离。例如,预期至 2020 年,最多只有 10% 的生产区块链分类账会整合至物联网传感器。而且,在大多数物联网系统的运算能力足以应付庞大的区块链实作之前,还有很长的路要走。

虽然尚未实现消除单点故障,但保护物联网安全的重点仍在于所有连网装置持续进行安全部署。除了及时更新软件以防止停机之外,采用物联网的个人与组织皆应关注的是完整的多层次安全防护,从网关到端点,皆能防止任何潜在的网络入侵与破坏。这需要:

变更预设的凭证。原厂预设凭证导致物联网恶名昭彰地成为殭尸网络并入侵连网装置。因此,建议用户启用密码保护,并使用唯一且复杂的密码,以降低装置遭骇的风险。

►强化路由器安全性。易受攻击的路由器导致易受攻击的网络。透过完整的安全解决方案保护路由器安全,可让用户掌握所有连网装置,同时维持隐私与生产力。

►设定装置以确保安全。装置的默认设定应加以检查,并依照使用者的需求进行修改。建议自定义功能并停用不必要的功能,以提高安全性。

►监控网络流量。积极扫描网络中的异常行为,协助使用者防范任何恶意企图。透过安全解决方案提供的实时扫描,亦可实施自动且高效率的恶意软件侦测。

►实作附加安全措施。建议使用者启用防火墙并使用 Wi-Fi Protected Access II (WPA2) 安全通讯协议以增加保护。采用网页信誉评等与应用程控的解决方案,亦可为网络提供更好的可见度。

本文来源:区块链:安全与物联网之间的必要环节?

点击这里,获取更多IOT物联网设计信息

围观 2
384

物联网是新一代信息技术的重要组成部分,也是“信息化”时代的重要发展阶段。物联网是互联网的应用拓展。

我国的物联网产业布局这方面算是开始比较早,随着近几年,我国经济持续稳健发展,促使物联网产业快速发展,全国物联网产业的市场规模大幅度增长,形成了一个具有广阔市场前景和发展潜力的产业体系。

近日,2018世界物联网博览会新技术新产品新应用成果征集新闻发布会在南京召开,物博会组委正式面向全球征集物联网领域最新科技成果。发布会期间,加拿大皇家科学院院士、加拿大工程院院士、美国电气电子工程协会院士杨恩辉在接受中经社江苏中心访谈时表示,我国加快物联网技术创新,应双向发力,一方面要加大共性基础技术研究力度,另一方面要以生活及文化需求为导向进行研究。

杨恩辉说,近一时期,我国芯片技术存在的短板引发各界关注。我国在芯片技术上与国外的差距,基本体现出我国物联网技术与国外的差距。加快物联网技术创新,我国必须要从国家层面总线布局,加强基础理论源头创新,研究共性基础技术,并在此基础上一步步将理论实践化,最终推向市场服务社会。这既是我国对全球基础科学的贡献,也可以提高国际名声。

据前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》数据显示,中国2015年物联网产业规模达到7500亿元人民币,预计到2020年将达到1.8万亿元。

物联网

目前,我国物联网技术创新,大多仍停留在基于国际先进核心技术、根据实际应用需求加以改进创新的层面,对国外技术的依赖度较高,缺乏原生态创新,也缺乏拥有强大技术实力和竞争力的龙头企业。此外,我国潜心研究核心技术基础的自主创新人才也相对较少。

杨恩辉认为,这一现状与我国的教育、生活方式及文化氛围有一定关系。西方国家更倾向于相对分散的居住环境,而不同的环境促使他们必须在各自的环境条件下自主思考,从而开展适宜的技术研究。我国则更倾向于彼此之间相互影响,自主创新意识相对薄弱。

对此,他建议,我国在基础教育时,应着重培养学生的自主意识,避免跟风研究。这种自主意识主要表现在,要让学生学会自我思考,在实际中发现问题,并了解自己是否对这个问题非常感兴趣、这个问题是不是对国计民生有价值等,从主观层面促进自主创新。

此外,杨恩辉强调,我国物联网技术在应用层面上已可比肩国外,加快我国物联网技术创新,要充分发挥应用优势,以生活及文化需求为导向,认识到我国历史文化及生活需求与国外的差异,不断发现问题,加快应用技术创新。

物联网是继计算机和互联网之后,在世界范围内兴起的又一次信息技术革命。物联网技术所带来的产业价值是互联网技术的30倍以上,该技术将会形成的通信业务将达到万亿元人民币级别,前景非常可观。

(来源:前瞻产业研究院)

中国物联网行业发展前景 市场规模大幅增长

点击这里,获取更多IOT物联网设计信息

围观 8
431

作者:Reza Moghimi,ADI公司应用工程经理

内容提要

在低功耗、低成本设计中,尽量降低系统噪声至关重要。为了从信号调理电路获得最低噪底和最佳性能,设计人员必须了解元件级噪声源并在计算模拟前端的总噪声时充分考虑这些噪声源——若要针对极小信号实现高分辨率,就必须能够透过数据手册上有限的噪声指标了解内在本质,这点至关重要。每个传感器都具有自身的噪声、阻抗和响应特性,因此将它们匹配到模拟前端是设计过程的一个重要部分。有多种方法可以计算电路的噪声——在执行噪声分析和计算之前,所有这些方法都应该先优化配置信号调理电路。如果有良好的运算放大器SPICE模型可用,则使用SPICE是最简便的方法。

精确的信号调理和高分辨率测量已不再局限于工业或仪器仪表应用。便携式消费电子设备的设计人员也需要将系统噪声降至最低。由于电池供电设备中的信号电压较小,因此这可能相当具有挑战性。系统精度取决于噪底。为了从信号调理电路获得最低噪底和最佳性能,设计人员必须了解元件级噪声源并在计算模拟前端的总噪声时充分考虑这些噪声源。

一些设计人员坚信选择噪声最低的元件可以解决其所有信号调理噪声问题。这种想法是一个好的起点,但是信号调理应用中采用的大部分IC放大器和基准电压源在数据手册中仅会给出几个有限频率处的噪声规格。因此,设计人员只能通过有限的信息来选择器件。他们不知道元件噪声来自哪里以及受哪些因素影响,噪声是否随着时间、温度和电路配置而变化,或是在选择噪声最低的器件前是否需要了解制造工艺。在当今的低功耗、低成本设计中,很多系统无法承受最昂贵的器件或通过提高功耗来降低噪声的器件。本文首先探讨了这些话题,然后为选择手头设计任务的最佳元件提供了指南。

详文请阅:传感器电路的低噪声信号调理

点击这里,获取更多IOT物联网设计信息

围观 16
476

自从第一台IoT设备于1990年问世以来,物联网已经有了长足的发展,这是一种可以在互联网上开启和关闭的烤面包机。27年之后,联网设备已经从新奇产品变成了日常生活中必不可少的一部分。

最近的预估显示,成年人平均每天花在智能手机上的时间超过4个小时,智能手机也是一种装有物联网传感器数据的设备。

目前,81%的成年人拥有智能手机。想象一下,当81%的成年人拥有智能汽车和智能家居时,我们将会收到多少数据。

今天,IoT设备的大部分数据都在云中处理,这意味着全球所有角落产生的数据都被集中发送到数据中心的少数计算机上。然而,随着IoT设备的数量预计将在2020年猛增至200亿,通过互联网发送数据的体积和速度对云计算方法提出了严峻的挑战。

越来越多的设备连接将迫使IoT制造商在2018年将云计算模式从云计算模式转移到一种称为“雾计算”的新模式。

1、数据访问增多,云计算问题明显

物联网和人工智能的发展将带来价值数以亿计的数据。分布广泛的传感器、智能终端等每时每刻都在产生大量的数据。尽管云计算拥有“无限”的计算和存储资源池,但云数据中心往往是集中化的且距离终端设备较远,当面对大量的分布广泛的终端设备及所采集的海量数据时,云不可避免地遇到了三大难题:

网络拥塞,如果大量的物联网和人工智能应用部署在云中,将会有海量的原始数据不间断地涌入核心网络,造成核心网络拥塞;

高延迟,终端设备与云数据中心的较远距离将导致较高的网络延迟,而对实时性要求高的应用则难以满足需求;

可靠性无法保证,对可靠性和安全性要求较高的应用,由于从终端到云平台的距离远,通信通路长,因而风险大,云中备份的成本也高。

因此,为满足物联网和人工智能等应用的需求,作为云计算的延伸扩展,雾计算(Fog Computing)的概念应运而生。雾计算最早由思科提出,它是一种分布式的计算模型,作为云数据中心和物联网设备 / 传感器之间的中间层,它提供计算、网络和存储设备,让基于云的服务可以离物联网设备和传感器更近。

雾计算主要使用边缘网络中的设备,可以是传统网络设备,如网络中的路由器、交换机、网关等,也可以是专门部署的本地服务器。这些设备的资源能力都远小于一个数据中心,但是它们庞大的数量可以弥补单一设备资源的不足。

在物联网中,雾可以过滤、聚合用户消息,匿名处理用户数据以保证隐秘性,初步处理数据以便实时决策,提供临时存储以提升用户体验,而云则可以负责大运算量或长期存储任务,与雾计算优势互补。

通过雾计算,可以将一些并不需要放到云上的数据在网络边缘层直接进行处理和存储,提高数据分析处理的效率,降低时延,减少网络传输压力,提升安全性。

雾计算以其广泛的地理分布、带有大量网络节点的大规模传感器网络、支持高移动性和实时互动以及多样化的软硬件设备和云在线分析等特点,迅速被物联网和人工智能应用领域的企业所接受并获得广泛应用,例如,M2M、人机协同、智能电网、智能交通、智能家居、智能医疗、无人驾驶等应用。

与边缘计算(Edge Computing)不同的是,雾计算可以将基于云的服务 , 如 IaaS、 PaaS、 SaaS,拓展到网络边缘,而边缘计算更多地专注于终端设备端。雾计算可以进行边缘计算,但除了边缘网络,雾计算也可以拓展到核心网络,也就是边缘和核心网络的组件都可以作为雾计算的基础设施。

2、“云”和“雾”典型案例和应用场景

融合云平台和雾计算,一方面可通过云降低传统 IT采购、管理和运维的开支,将 IaaS、 PaaS、 SaaS作为云服务输出;另一方面,通过雾计算可保证边缘端数据的实时搜集、提取和分析速度,提高网络资源部署使用和管理效率,有助于提高人机协同效率,为企业业务创新、服务品质提升提供技术支持。以下是四个行业“云”和“雾”的典型案例和应用场景。

工业

GE基于 Pivotal Cloud Foundry打造了 Predix 物联网 PaaS平台,结合戴尔智能仿真技术,实现了“数据双胞胎”。基于云计算,GE 实现了飞机发动机生产过程中的调优,同时,基于雾计算,GE 实现了飞机飞行过程中的“自愈”。

GE Predix 作为物联网 PaaS 平台,还助力制造企业将大数据、物联网和人工智能转化为智能制造能力,实现数据创新。GE Predix 平台,融合云计算和雾计算以及“数字双胞胎”,帮助制造企业实现“虚拟 - 现实”的设计生产融合,并为其提供云计算服务。

农业

Chitale Dairy是一家乳制品厂。基于戴尔科技虚拟化技术,Chitale Dairy实现了 ERP云部署。他们基于雾计算,通过为奶牛装上传感器,进行近实时数据采集分析、处理,实现精细化运营,保证乳制品生产全流程的监控、管理、优化。同时,Chitale Dairy 通过基于云的乳业生命周期管理平台,实现了乳制品生产流程自动化管理,通过物联网和大数据分析,对每头奶牛从食料、喂养、健康、牛奶质量和产量进行全流程监控分析,实现精细化和自动化乳业生产。

将云的整体业务管理和雾端的优化农场间协作以及奶源监控管理紧密连接起来,在提高乳制品生命周期管理效率的同时,提升了协同和协作效率,加速企业业务创新的速度。

服务业

TopGolf 是一家高尔夫俱乐部。通过采用戴尔科技的虚拟化和超融合技术,形成了高尔夫数字化高端服务输出能力。他们通过向数字化转型,打破了传统高尔夫的业务模式。通过物联网,将 RFID 芯片嵌入高尔夫球里,实现对每次击球、每个队员和赛事进行实时监控,并基于雾计算,实时跟踪和分析每个击球动作和球的路径,实现实时积分。

TopGolf 的业务模式融合了云计算和雾计算,实现了跨数据中心、云和边缘应用的实时数据监控、交互和管理,满足赛事实时监控、场上场下互动、赛前球员积分分析、社交媒体、会员个性化数据管理等大数据分析的需求。

交通业

在智能交通中,可通过传感器搜集信息,进行实时数据分析和交通部署,以提高公共安全。通过雾计算,智能交通控制系统中的一个雾节点可以共享收集到的交通信息,以缓解高峰时段的交通拥堵、定位交通事故,并可以通过远程控制缓解交通拥堵区域的交通状况。同时,在每个用户的电话和公共交通中,基于雾计算的应用程序允许用户在没有持续网络连接的情况下,共享并通过附近的用户下载内容。

此外,自动化车辆的安全系统、道路上的监控系统以及公共交通的票务系统,都可以从传感器和视频数据中收集大量信息。聚合后的数据将传输到云上,根据用户的需求进行数据提取和分析,再基于雾计算实现边缘数据实时分析,从而为用户快速提供精准信息,以保障公共交通的畅通和安全。

3、未来雾计算将扮演重大角色

从商业运营模式到工作生活方式,智能物联网技术正深刻改变着人类社会。要让物联网拥有无处不在的智能,就必须充分利用网络环境中分散存在的计算、存储、通信和控制等能力,通过资源共享机制和协同服务架构来有效提升生产效率或用户体验。

当前,雾计算技术的研究和标准化工作刚刚起步。我们面临的主要技术挑战和研究热点为:如何在雾计算节点之间建立信任关系,如何在它们之间推动资源充分共享,如何在云—雾—边缘等多层次之间实现高效通信和紧密协作,如何在异构节点之间完成复杂任务的公平按需分配等。

可以预见,随着雾计算技术的不断发展成熟和普及应用,智能物联网将越来越便捷、越来越真实地借鉴和映射人类社会的组织架构和决策机制,从而能用更自然和更熟悉的方式为每个人提供触手可及、无处不在的智能服务。

本文转自:物联网设备爆发式增长,云计算模式正走向“雾计算”

点击这里,获取更多IOT物联网设计信息

围观 8
584

电动汽车逐渐成为近年来的一个热门话题。这种"绿色"汽车依靠串联电池组来获得足够高的电压,从而有效驱动电机。全电动汽车 (EV) 和混合动力汽车 (HEV) 均采用这种高压 (HV) 电池组。HEV 依靠内燃机 (ICE) 充电,而且在许多情况下,内燃机也会提供动力。 EV 则必须插入电源中充电,有些新型混合动力设计称为"插电式混合动力汽车"(PHEV),它基本上可视为一种 EV,但配有内燃机以延长行驶里程.

高压电池组已广泛用于许多工业和交通运输业以外的领域,通常可用作:以直流形式储存输电网电能的不间断电源 (UPS); 48-V 通信设备中的应急直流电源;起重机和电梯系统中的应急电源;以及紧急情况下驱动风力涡轮机的叶片。虽然本文讨 论汽车中电池组的使用,但一些根本问题在所有类型电池组中都会存在。

交通运输应用中的电池组一般含有 100 块甚至更多的电池,可提供数百伏电压。一般公认50 V 或60 V 以上的电压可以致 命,而可能导致电子设备损坏的电压则更低(考虑利用某些类型电化学反应的电池稳定性),因此安全问题至关重要。虽然 这些电池组本身具有危险性,但仍然必须与电池壳内的电池监控电子设备通信。因此,通信方式必须安全可靠。

高压电池组中的电池结构

原始设备制造商一般要求将电池装到保护壳中,称为"电池包",通常含有 6 到 24 块串联电池。含有较多电池的电池包体积更大,也不易放入典型的汽车空间中。相关的电池监控集 成电路靠近受监控的电池,并由电池本身供电。是否有必要监控各电池的电压,取决于电池的化学原理。例如,我们非常了解基于镍氢 (NiMH) 化学原理的高压电池组性能,因此一般无 需测量各电池电压,只需测量特定电池包内所有电池的总电压即可。而基于锂离子(Li-Ion) 化学原理的电池组,则必需监控各电池的电压,以便检测电池串中的任一电池有无发生过压或 欠压情况。一般不必测量各锂离子电池的温度,但应提供相关测量功能。因此,镍氢电池组的监控电子设备比锂离子电池组的监控电子设备简单得多。图1 显示一种构建和监控高压电池 组的常用方法。

电池监控器 IC 通常处理 6 块或 12 块电池。目前,ADI 公司提供两种专用特殊用途 (ASSP) 产品用于电池监控: AD72801 基于高速多路复用 12 位模数转换器,主要用作主监控器;另一种器件基于一系列窗口比较器,用作备用或冗余监控器。本文不会深入讨论这些产品,但仍需说明这些器件在电池组配 置中如何通信。每个电池为上方电池的测量输入确立共模电平。菊花链接口允许电池组的各AD7280 直接与其上或其下的AD7280 通信(从而沿着堆叠上下传递数字信息),而无需隔离。最底部AD7280 的SPI 接口用来与系统微控制器交换整个 电池组的数据和控制信号。此处必须采用高压电流隔离,以保护系统中的其它低压电子器件。

图1. 电池组中的串联电池监控和隔离

图 1 中,串联电池串的中间有一个开关或接触器。一般情况下,无论汽车正常行驶还是停车,该开关始终闭合。车辆维修时或紧急情况下,需将该开关拉开或离开所在位置,禁止电池 组端电极出现电池组电压。为了不影响开关断开所提供的隔离性能,必须确保没有任何电子器件桥接开关端子。因此,开关断开时,电池组的上半部分应与下半部分应保持电气隔离。这 意味着,电池组上半部分的电池数据必须通过其最底部的电池监控器通信,跨过隔离栅,传输至管理整个电池组数据流入流出的微处理器或微控制器。类似地,电池组下半部分也必须与 此微处理器或微控制器隔离,因此也有与上半部分相同的隔离栅。

除电池监控器外,电池组中还有一个电流监控器,用来测量并报告电池组的电流。该监控器一般放在电池组底部,也需要考虑隔离。霍尔效应电流传感器本身具有电流隔离功能,无需再 配置隔离电路。不过,如果该电流传感器采用分流元件,则相关的分流监控电路需要单独的隔离栅。使用分流方法检测电流越来越受欢迎,它比霍尔效应检测更稳定、更精确,而且价格 也更有竞争力。使用低值分流电阻和低成本、高分辨率监控电子器件(例如通过AEC-Q100 认证的AD820x 和AD821x 系列 分流监控器 , 至今针对汽车插座的出货量已超过1 亿片),可以将自发热降至极小,使这种方法的传统弊端不复存在。因此,除非电流检测监控器能够接入最底部的电池监控器,共用 其隔离栅,否则图 1 中的系统需要三个独立的隔离栅。另一种颇受欢迎的构建电池组方法是将电池包分为一系列电气独立的电池群组(图 2)。每个电池群组最底部的监控器跨过 专用隔离栅,将本地电池状况回传给非隔离端的微控制器.

另一种颇受欢迎的构建电池组方法是将电池包分为一系列电气 独立的电池群组(图 2)。每个电池群组最底部的监控器跨过专用隔离栅,将本地电池状况回传给非隔离端的微控制器。

图2. 并行接入电池包的电池组

这种方法会使用更多的数字隔离器,因此成本比图1 所示系统更高,但它可以同时要求所有电池群组报告电池组内电池监控器所监测到的信息,从而能在更短的时间内回读所有电池数 据。另一个好处是,当菊花链发生问题时,如断线或连接器接触不良等,备用监控器可以继续监控。将剩余电池包电压与总电池组电压进行相关分析,仍然可以确定停止工作电池包的数据。

这种方法的确需要更多电缆,由于高达 75% 的电磁兼容性(EMC) 问题与输入/输出(I/O) 端口有关,因此这可能会引发问题。 I/O 端口是一种开放式通路,供静电放电电荷、快速瞬变放电电荷或浪涌进入一台设备,以及供干扰信号逃逸——通过传导I/O 线路上的杂散信号,或者通过I/O 电缆的辐射。电池 组电缆较多的话,若不特别注意信号的稳定性以及所选的通信协议,其 EMC 性能会大幅下降。因此,与端口相连的 I/O 设备的 EMC 性能对于整台设备的 EMC 性能至关重要

颇受欢迎的SPI通信协议适合同一印刷电路板 (PCB) 上的器件之间通信,但单端信号可能难以经由 24 至36 英寸电线实现 可靠传输,尤其在高噪声环境中。如果数字信号要在板外传输,则谨慎起见,系统设计中可能需使用差分收发器,例如 ADM485. 这些收发器可以采用低端电源供电,无需直接耗用 电池组中的电池电源。

隔离技术是电池组通信的关键

为了提高电池组电压,以便满足重型私家车以及轻型卡车、货车的更高功率电机需求,必须增加电池组中的电池数量。除了增加串联电池数量之外,现在的许多电池包还含有并联电池串,目的是提高整个电池包的安培小时(AH) 容量。必须监控各并联电池串,因而需要收集大量数据。与所有这些电池相关的电池监控器数据,必须在系统集成商设定的系统环路时间要求范围内,可靠地回传给电池测量系统(BMS) 微控制器。

因此,跨越系统间边界提供可靠数据通信的难度也随之增加。获得汽车应用认证的隔离技术,正是跨越典型电池组内如此众多的隔离边界实现可靠通信的关键因素, ADI 公司就能够提供这种技术。该技术的基础是"磁隔离",变压器则采用高性价比标准 CMOS 工艺以平面方式制造(参见图3)。这有利于将多个隔离通道集成到单个器件中,或者将隔离通道与其它 半导体功能,如线路驱动器和模数转换器等(例如隔离Σ-Δ调制器AD7400 )集成于一体。

图3. 四通道隔离器ADuM1402功能框图

不像光耦合器,这些iCoupler®数字隔离器的性能在汽车整个使用期限内都不会下降,可以适应因季节变化经常会遇到的恶劣工作条件。表1 所列为最近发布的系列器件,这些器件已通过 AEC-Q100 认证,工作温度最高可达 125°C,所用材料与ADI 公司iCoupler 系列产品中广泛认可的对应器件相同,至今该系列出货量已超过3 亿片。表中双通道、3 通道和 4 通道 数字隔离器系列的数据速率最高可达25 Mbps,传播延迟低至32 ns。

表 1. 通过AEC Q100 认证的 i Coupler 隔离器

电源电压范围(V)3.5 to 5.5 V; 最大温度(°C) 125°C

平面变压器本身是双向的,因此信号可以沿任一方向传送。在总通道数范围内,驱动通道和接收通道可以任意组合使用。 例如,双通道 ADuM120xW、3 通道 ADuM130xW 和 4 通道ADuM140xW 单独或一起可提供7种不同的通道配置(4-0、3-1、2-2、3-0、2-1、2-0、1-1),确保所有情形下都能采用最 佳解决方案。图4归纳了可提供的各种不同配置。

图 4. ADuM120xW/ADuM130xW/ADuM140xW的七种不同配置

iCoupler 技术有两个突出特点:支持高数据速率,以及可以采用低电源电流工作。iCoupler 通道耗用的电源电流主要取决于它所承载的数据速率。采用 3V 电源工作、数据速率最高为 2 Mbps 时, ADuM140xWS 两端及所有四个通道的总电源电流典型值为1.6 mA(最大值4 mA)。因为在ADuM140xWS 的隔离端或"热"端,电源来自电池本身(通过一个稳压器),所以低功耗十分重要。监控器也采用同一电压源供电,因 此,监控和通信电路所有元件的功耗越低越好。所有隔离产品均提供小尺寸、薄型、表贴8 引脚SOIC_W或16 引脚SOIC_W封装,并且已通过 UL、CSA 和 VDE 安全认证。隔离额定值 最高可达2.5 kV(有效值),工作电压最高可达400 V(有效值)。

iCoupler 技术孕育出isoPower 集成式隔离电源

i Coupler 技术最激动人心的一项成果是将电源输送与信号传输集成在同一封装中。现在,利用与信号隔离所用的微变压器相似的技术,可以跨越隔离栅输送电源,从而为电池组中的数据 隔离器提供完全集成的远程供电解决方案。本地电源供给振荡电路,它通过一个芯片级空芯变压器切换电流。输送至隔离端的电源经过整流和调节,稳定在 3.3 V 或 5 V。隔离端控制器 通过产生一个PWM 控制信号,对输出进行反馈调节,该控制信号经由一个专用iCoupler 数据通道送回本地端。 PWM控制信号调制振荡器电路,以控制送至隔离端的电源。使用反馈功能可以明显提高功率和功效比。

ADuM540xW 是4 通道数字隔离器,内置isoPower®集成式隔离DC-DC 转换器;输入电源为5.0 V 或3.3 V 时,可提供最高500 mW的稳压隔离功率。与标准iCoupler 器件一样,它可提供多种不同的通道配置和数据速率。由于isoPower 器件利用高频开关元件通过其变压器输电,因此进行 PCB 布局时必须特别小心,确保符合电磁辐射标准。有关电路板布局考量因素 的详细信息,请参考应用笔记 AN-0971 :" isoPower器件的辐射控制建议"。ADuM540x 系列目前正在进行 AEC-Q100 认证。

作者:John Wynne

点击这里,获取更多IOT物联网设计信息

围观 26
2650

页面

订阅 RSS - 物联网