隔离

简介

凌力尔特的隔离器μModule ®转换器是断开接地环路紧凑的解决方案。这些转换器采用反激结构,其最大输出电流随输入电压和输出电压而变化。虽然它们的输出电压范围限制在最大12V,但可以增加输出电压或输出电流范围。该解决方案只需连接两个或多个串联的隔离式μModule转换器的二次侧。

的LTM8057和LTM8058 UL60950公认2kV的AC隔离微型模块转换器将被用于证明这种设计方式,其也可以应用到LTM8046,LTM8047和LTM8048。假设20V输入时需要300mA的10V输出。回顾图1中的最大输出电流曲线,我们注意到单个LTM8057不足以满足这些条件下的输出电流要求。

典型最大输出电流与输入电压的关系

然而,在注意到单个LTM8057能够在20V输入电压下提供300mA电流的情况下,解决方案变得明显。由于输出电压与输入电压隔离,两个设置为5V的LTM8057的输出可以串联连接,以实现300mA时的10V输出(图2)。

两个串联输出的LTM8057模块,支持20V IN的10V,300mA输出应用

当需要超过12V时,图2中的相同电路也可用于提高输出电压范围。通过调整反馈电阻以提供7.5V标称输出电压,组合输出电压已增加至15V。15V的输出电流能力与单个7.5V模块的输出电流能力相同(图3)。

两路串联输出的LTM8057模块在12V 输入电压为15V时输出电流超过160mA

图2所示的电路支持第三种选择:提供正反向输出和共同返回。两个输出的返回节点是输出堆栈中间的公共连接。采用这种方法,图2中的电路将具有5V和-5V输出。每个输出可以具有不同的幅度,因为每个转换器的输出电压是独立确定的。

低输出噪声串联连接的转换器

具有集成LDO后置稳压器的LTM8058的低输出频谱噪声优势仍可以通过串联输出来保持。图4显示了两个带V OUT2的 LTM8058的原理图,LDO的输出串联在一起用于10V OUT。图5和图6分别显示了LTM8058在10V时100mA负载下的输出噪声谱,LDO输出串联连接(图4示意图)和反激输出串联连接。

两个LTM8058模块串联连接V OUT2用于10V OUT

在100mA,10V 输出负载下两个串联LDO输出的LTM8058的噪声谱

两路LTM8058的噪声频谱,在100mA,10V OUT负载下串联连接反激输出

凌力尔特的隔离型μModule转换器为稳压输出电压下的隔离电源提供了简单而紧凑的解决方案。LTM8057和LTM8058成功证明,通过增加一个或多个隔离模块,可以增加隔离型μModule转换器的输出能力,同时保持输出噪声特性,同时串联输出。

作者:耶稣罗萨莱斯 威利陈

点击这里,获取更多电机控制设计信息

围观 4
88

Analog Devices, Inc. (ADI)近日宣布推出其新一代增强隔离式电源转换器,使系统满足EN 55022/CISPR 22 B类电磁干扰(EMI)标准的需求,为器件级低辐射树立新的标准。ADuM5020/6020和ADuM5028/6028系列无需在应用层面使用高成本的EMI抑制技术,并且可简化EMI认证流程,降低设计成本和缩短设计时间。

· 查看ADuM5020与ADuM6020的产品页面,下载数据手册和申请样片: http://www.analog.com/pr180606/adum5020http://www.analog.com/pr180606/adum6020

· 查看ADuM5028与ADuM6028的产品页面,下载数据手册和申请样片: http://www.analog.com/pr180606/adum5028 或 http://www.analog.com/pr180606/ADuM6028

· 查看最新隔离电源转换器视频: http://www.analog.com/IsoPower/video

电动汽车和混合动力汽车(EV/HEV)电池监控和工业可编程逻辑控制器(PLC)等新兴的安全关键型应用需要紧凑而密集的隔离设计,以减小尺寸并减轻重量,符合严格的辐射规范,并且为人员和设备提供可靠的高压保护。使用这些器件可在双层PCB上实现辐射目标,与四层板相比,这样可减小多达70%的解决方案尺寸,并降低30%的材料成本。新系列500mW DC-DC电源转换器基于ADI公司的iCoupler®和isoPower®芯片级变压器技术,工作温度最高可达125ºC,采用最小的8引脚封装。16引脚ADuM5020/6020和8引脚ADuM5028/6028是此系列中最先推出的器件。

ADuM5020/6020与ADuM5028/6028产品聚焦:

· 低辐射发射,低于EN 55022/CISPR 22 B类标准限值
· 封装尺寸最小——8引脚SOIC
· 工作温度最高可达125℃
· 安全和法规认证(UL、CSA、VDE、CQC)

报价与供货

关于ADI公司

Analog Devices, Inc.是全球领先的高性能模拟技术公司,致力于解决最艰巨的工程设计挑战。凭借杰出的检测、测量、电源、连接和解译技术,搭建连接现实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。详情请浏览ADI官网 http://www.analog.com/pr180606

点击这里,获取更多电机控制设计信息

围观 2
125

作者:Richard Anslow

简介

ADI公司的iCoupler®数字隔离器和RS-485收发器产品系列解决了工业应用中的两大需求:更高的数据速率和更低功耗的工作模式。

对于高性能电机控制编码器应用而言,通常需要更高的数据速率、更小的RS-485收发器封装和IEC 61000-4-2 ESD保护。ADM3065E/ADM3066E 50 Mbps收发器采用节省空间的10引脚 LFCSP封装,可提供±12 kV(接触)和±12 kV(空气)的IEC 61000-4-2 ESD保护功能,为 EnDat编码器提供了一套可靠的解决方案(请参考AN-1397应用笔记了解更多 信息)。此外,在ADM3065E/ADM3066E 中添加高速稳定的信号和功率隔离可以通过 isoPower®ADuM6401或 isoPower ADuM6000 及 iCoupler ADuM241D来实现,如本应用笔记中所述。

在电池供电系统、井下应用(例如,采矿)以及在4 mA至20 mA环路中工作的过程控制系统中,往往对低功耗工作模式具有较高需求。ADI公司生产的微功耗数字隔离器ADuM1441在关断模式下的静态功耗低于23 μA。ADM3483 3.3 V、250 kbps RS-485收发器的静态功耗极低,关断模式下通常仅2 nA。

图1所示为适合井下应用稳定可靠的低功耗隔离式RS-485解决方案。ADM3483和ADuM1441共用可提供一条通往远程地下测量节点的可靠低功耗链路。系统接口卡包括ARM® Cortex® 微控制器单元(MCU)、ADuCM3027和集成模拟前端(AFE)AD7124-4,用于远程温度和压力测量。系统接口卡的固件更新通过远距离RS-485电缆提供,更新后能够在最长1 km的远距离内实现低数据速率传输(例如,9.6 kbps)。

图1.适合井下应用稳定可靠的低功耗隔离式RS-485解决方案

隔离式高速RS-485

利用iCoupler和isoPower技术,可以向ADM3065E中增添兼具加强绝缘和5 kV rms瞬态耐受电压的电流隔离。ADuM6401提供了所需的四通道5 kV rms信号隔离、最高25 Mbps的工作速率以及集成式DC/DC转换器。ADuM6401配合ADM3065E(如图2所示)需将VISO引脚配置为3.3 V,具体方法是将VSEL引脚连接到GNDISO引脚,并将5V电源连接到VDD1引脚。在3.3V电压下工作,即使数据速率达25 Mbps,也可以确保ADM3065E仍保持在ADuM6401的负载能力范围内。

利用ADuM241D四通道数字隔离器和ADuM6000隔离式DC/DC转换器,可以实现50 Mbps数据速率以及ADM3065E隔离,如图3所示。ADuM241D的数据速率最高可达150 Mbps,能够提供完全支持ADM3065E以50 Mbps数据速率工作所需的精确时序。

不过,以50 Mbps数据速率工作的前提是使ADM3065E工作在3.3 V电压下。

如果需要在5V电压下工作,可以将ADuM6000上的VSEL引脚连接到VISO,但支持的最大数据速率会降低(例如,

ADuM6401和ADuM6000 isoPower器件中的DC/DC转换器可为ADM3065E(和ADuM241D)提供稳压隔离电源。这两款isoPower器件利用高频开关元件,通过变压器传输功率。用户必须遵循辐射标准进行印刷电路板(PCB)布局。如需PCB布局建议,请参考AN-0971应用笔记。

图2.信号和电源隔离的25 Mbps RS-485解决方案(简化图,未显示全部连接)

图3.信号和电源隔离的50 Mbps RS-485解决方案(简化图,未显示全部连接)

隔离式低功耗RS-485

图4显示了ADuM1441微功耗、四通道、数字隔离器和ADM3483低功耗、半双工RS-485收发器的组合。

当ADM3483处于关断模式(驱动器使能DE引脚为低电平且接收器使能RE)引脚为高电平)时,静态电源电流通常仅为2 nA(最大规范值为1 μA)。如图4所示,ADuM1441的引脚7和引脚10分别连接至GND1和GND2。这意味着当ADuM1441隔离器处于无总线通信活动的关断模式时,其静态电流低于23 µA。总体来说,该解决方案的静态功耗低至24 µA以下。

如果ADuM1441的引脚7和引脚10分别直接连接到VDD1和VDD2,则ADuM1441的静态功耗仅1.2 µA。这可以通过PCB上的跳线连接来实现,用户可以选择将引脚7连接到VDD1或GND1,还可以选择将引脚10连接到VDD2或GND2。将ADuM1441中的1.2 μA静态功耗特性添加到ADM3483静态电源中,可实现一个在关断或待机模式下仅消耗2 μA电流的完全隔离式RS-485节点。为了确保隔离器正常工作,ADuM1441的引脚7和引脚10必须分别连接到GND1和GND2。

图4.低功耗、隔离式RS-485节点

点击这里,获取更多电机控制设计信息

围观 22
158

作者:Eric Gaalaas,ADI公司

简介

通用串行总线(USB)是个人计算机(PC)通过电缆与外设实现通信的常用方法。某些应用中,需要隔离USB通信以满足安全要求,或中断接地环路。遗憾的是,隔离任务不易完成,因为USB电缆上有双向数据流。本文将讨论这个问题,并探讨实现易于使用的隔离式USB方案面临的其他挑战,最后对解决方案进行比较。一个理想的“透明”解决方案能将隔离对系统的影响降至最低,目前我们就可以提供这种解决方案。本文讨论的内容针对USB 2.0,支持三种数据速率: 1.5 Mbps(低速)、12 Mbps(全速)和480 Mbps(高速)。为简便起见,将详细探讨12 Mbps的情况,但示例中的很多原理同样适用于其他速度。

图1. 全速(12 Mbps) USB连接(非隔离式)

USB基础知识

USB广受欢迎的一个原因是它具有简单的4线式接口,能够为外设供电,并在外设与PC之间提供串行数据链路。图1显示标准的USB连接。VBUS和GND线提供5 V电源和接地,而D+和D–则承载数据。信号发送方式为双向半双工,表示数据可在任一方向沿电缆传输,但任意特定时刻最多只有一个发送器主驱动电缆。通信期间,USB发送器驱动差分或单端状态至D+和D–。数据以分组的形式进行组织,并用特殊信号序列表示分组开始和分组结束。有时总线处于空闲状态,也就是说没有激活任何发送器,时连接电缆D+和D–端点的电阻将建立“空闲”总线状态。空闲状态协助对分组之间的总线进行初始化它们还用来向主机指示外设的连接与断开状态,以及外设所需要的通信速度(1.5 Mbps、12 Mbps或480 Mbps)。

隔离总线主机和外设的方法

现在,请想象一下主机和外设的电气隔离。如[1]所述,隔离栅的位置可以有数个选项。无论哪种情况,都应隔离多个信号,并且信号的运行速度可能较快,或者信号可能是双向的。这取决于在何处进行隔离。这使得基于分立器件构建的解决方案变得更为复杂。完整的物料清单可能更长,并且有可能很难找到完全满足信号传送要求的分立器件。

图2a. 隔离分割了电缆(概念)

图2b. 隔离分割了电缆(显示额外电阻)

一种可能的隔离方法如图2a所示。图中,虚线表示隔离在理论上将USB电缆分割。D+和D–的状态信息可以跨越隔离栅,但电流不能。GND1节点(上游的接地基准)现在与GND2节点(下游的接地基准)相互分离。不幸的是,隔离使主机无法“看到”下游的上拉电阻,而外设无法“看到”上游的下拉电阻。因此,需要使用一些额外的电阻,如图2b所示,以便跨越隔离模仿相应连接。在这个“透明”概念中,主机与外设之间的通信方式和图1中的非隔离式连接十分类似。透明的USB隔离器元件可方便地插入收发器和USB电缆之间,并使用隔离电源。原本设计用于非隔离式应用的主机和外设可方便地连接USB隔离器并交换标准USB信号,无需大幅改动设计。

这种方法非常有吸引力,只要此概念可以真正实现,但需克服一些挑战。例如,独立的光电耦合器或数字隔离器通常不提供兼容USB的驱动特性,也不支持双向半双工通信方式。很多光电耦合器无法在12 Mbps或更高速率工作,并且具有较高的传播延迟和时序误差,不符合USB 2.0时序要求。后面还将提到其他问题。

目前,我们先讨论不透明的替代方案,如[1]中所述的方案。这些解决方案将隔离放在主机或外设的硬件内部,而不是通过隔离平分USB电缆。这样可以放在USB收发器和串行接口引擎(SIE)之间,或者SIE和USB控制器之间。如此,便可以采用独立的通用隔离器来隔离单向数字逻辑信号。然而,这样做有几个缺点。首先,必须定制USB收发器或控制器硬件,才能插入隔离元件。可能还需要额外的微控制器代码或修改USB驱动器软件。这将会为系统设计人员带来额外的工作量,并显著增加所需的电路板空间,因为这些解决方案非常复杂,要用到多个器件。另一个不足之处是,这样可能会导致总数据吞吐速率的下降,因为数据现在通过USB收发器和单独隔离的串联组合方案发送。隔离方案可能增加与编码和解码为另一种串行格式(如SPI)有关的延迟,或者增加与低速或隔离元件的非精确时序有关的延迟。

虽然存在这些缺点,但这类解决方案是在无法解决透明USB隔离器部署难题时的唯一可行方案。现在可以采用透明解决方案了。本文的余下篇幅将描述一个完全符合要求的示例。

透明USB隔离器要求

一个USB隔离器系统必须满足一些要求,以实现完全的“透明”工作:

1. 它必须驱动UD+、UD–、DD+和DD–,驱动方式与标准USB收发器相同,并实际包含两个USB兼容收发器,分布在隔离栅两侧(图3)。

图3. ADuM4160功能框图

2. 它必须管理USB电缆上的双向通信,确保其收发器在适当的时候进行发送和接收,并精确重现所有驱动和空闲状态。若要精确重现空闲状态,它必须在其上游侧配置上拉电阻,以模拟连接下游外设的上拉电阻状态。它在下游侧也需配置下拉电阻。必须监控总线上表示总线空闲、分组开始和分组结束的信号,以便正确响应这些状况。

3. USB隔离器内部的信号隔离器元件必须跨越隔离栅正向和反向传输D+和D–数据。如果信号隔离器是单向的(通常如此),则USB隔离器系统需要多个隔离通道,其中某些通道沿下游方向传输,另一些通道则相反,沿上游方向传输。

4. 信号隔离器必须以精确时序快速运行,以便支持所需的USB信号速度,并满足USB传播延迟和时序误差要求。

5. USB隔离器的每一侧都应支持5 V或3.3 V电源提供的功率。如果提供5 V电源,那么隔离器应当获得适合为该侧USB收发器供电的3.3 V调节电源。如果电源为3.3 V,那么隔离器可利用它来直接为USB收发器供电,并旁路其调节器。

透明USB隔离器的实现

ADI的ADuM4160 USB数字隔离器2满足全部要求,采用16引脚SOIC封装。原理框图如图3所示。它包含一对USB收发器、5个基于iCoupler®的数字隔离通道、控制逻辑以及2个“智能调节器”。它还集成1.5 kΩ上游上拉电阻,以及15 kΩ下游下拉电阻。

其USB收发器由简化控制器控制,后者无需完全解码并分析数据分组即可支持隔离功能。它能监控UD+、UD–、DD+和DD–,使信号指示总线空闲、分组启动和分组结束,并利用它们正确使能或禁用USB发送器,并忽略分组数据内容。若将下游分组数据从主机传输至外设,则会激活图3中的两个高位隔离通道,这与上游USB接收器和下游USB发送器相同。数据从UD+/UD–复制到DD+/DD–。分组结束时,检测分组结束序列,禁用所有USB发送器,允许总线进入空闲状态。如果外设随后开始传输上游分组数据,则USB隔离器检测分组启动序列,使能第三和第四条隔离通道以及上游USB发送器,并将数据从DD+/DD–复制到UD+/UD–,直到分组结束。然后,总线再次返回空闲状态,所有发送器关断,等待新数据到达。

ADuM4160使用第五条隔离通道交流下游侧控制线路的状态3,该控制线路激活一个集成在上游侧的上拉电阻,使得下游端口能够控制上游端口何时连接USB总线。该引脚可以连接到外设上拉电阻、一条控制线路或VDD2引脚,具体取决于何时执行初始总线连接。将引脚与外设的上拉电阻相连可让上游上拉电阻模拟其状态,同时让ADuM4160的下拉电阻模拟所连接主机的状态。所有活动与空闲状态均从隔离的一侧复制到另一侧。隔离通道是采用芯片级变压器的数字隔离器,可实现隔离通信。所有通道均可在100 Mbps以上工作,轻松支持12 Mbps USB“全速”数据。单芯片内集成所有通道可使能针对时序的严格控制,实现满足USB时序要求的低时序误差。ADuM4160产生的总传播延迟等于标准USB集线器产生的延迟。空闲总线的静态功耗低于USB限值。

智能调节器支持上文第5条要求中的电源选项,无需用户特别控制4。若要采用5 V为USB隔离器的一侧上电(如上游侧),则应将5 V电源连接适当的VBUS引脚(如VBUS1),而VDD1不连接。当传感器检测到电压施加于VBUS1而非VDD1时,将激活3.3 V调节器,为VDD1上电。若要转而采用3.3 V上电USB隔离器的一侧(如下游侧),则3.3 V电源应同时连接VBUS2和VDD2。当传感器检测到电压同时施加在两个引脚上时,将禁用片内调节器,以便直接使用外部3.3 V电源。

结论

“透明”USB隔离器理论上可隔离平分USB电缆,现可轻松用于原本针对非隔离式应用设计的USB硬件。与此相反,在主机或外设硬件内实现隔离则要求对硬件进行较大的更改,有时甚至可能降低USB性能。使用分立器件(比如现成的通用隔离器)完成透明方案难度很大。然而,最新的集成式解决方案(如ADuM4160)通过便利的单一封装解决了这些难题,极大地简化了USB应用中实现隔离的过程。

作者简介:Eric Gaalaas [eric.gaalaas@analog.com]是一位混合信号集成电路设计工程师,任职于ADI公司的iCoupler数字隔离器部门。他拥有美国康奈尔大学电气工程学士学位和工程硕士学位。Eric发表了很多相关文章,并拥有九项专利。

点击这里,获取更多电机控制设计信息

围观 12
228

电动汽车逐渐成为近年来的一个热门话题。这种"绿色"汽车依靠串联电池组来获得足够高的电压,从而有效驱动电机。全电动汽车 (EV) 和混合动力汽车 (HEV) 均采用这种高压 (HV) 电池组。HEV 依靠内燃机 (ICE) 充电,而且在许多情况下,内燃机也会提供动力。 EV 则必须插入电源中充电,有些新型混合动力设计称为"插电式混合动力汽车"(PHEV),它基本上可视为一种 EV,但配有内燃机以延长行驶里程.

高压电池组已广泛用于许多工业和交通运输业以外的领域,通常可用作:以直流形式储存输电网电能的不间断电源 (UPS); 48-V 通信设备中的应急直流电源;起重机和电梯系统中的应急电源;以及紧急情况下驱动风力涡轮机的叶片。虽然本文讨 论汽车中电池组的使用,但一些根本问题在所有类型电池组中都会存在。

交通运输应用中的电池组一般含有 100 块甚至更多的电池,可提供数百伏电压。一般公认50 V 或60 V 以上的电压可以致 命,而可能导致电子设备损坏的电压则更低(考虑利用某些类型电化学反应的电池稳定性),因此安全问题至关重要。虽然 这些电池组本身具有危险性,但仍然必须与电池壳内的电池监控电子设备通信。因此,通信方式必须安全可靠。

高压电池组中的电池结构

原始设备制造商一般要求将电池装到保护壳中,称为"电池包",通常含有 6 到 24 块串联电池。含有较多电池的电池包体积更大,也不易放入典型的汽车空间中。相关的电池监控集 成电路靠近受监控的电池,并由电池本身供电。是否有必要监控各电池的电压,取决于电池的化学原理。例如,我们非常了解基于镍氢 (NiMH) 化学原理的高压电池组性能,因此一般无 需测量各电池电压,只需测量特定电池包内所有电池的总电压即可。而基于锂离子(Li-Ion) 化学原理的电池组,则必需监控各电池的电压,以便检测电池串中的任一电池有无发生过压或 欠压情况。一般不必测量各锂离子电池的温度,但应提供相关测量功能。因此,镍氢电池组的监控电子设备比锂离子电池组的监控电子设备简单得多。图1 显示一种构建和监控高压电池 组的常用方法。

电池监控器 IC 通常处理 6 块或 12 块电池。目前,ADI 公司提供两种专用特殊用途 (ASSP) 产品用于电池监控: AD72801 基于高速多路复用 12 位模数转换器,主要用作主监控器;另一种器件基于一系列窗口比较器,用作备用或冗余监控器。本文不会深入讨论这些产品,但仍需说明这些器件在电池组配 置中如何通信。每个电池为上方电池的测量输入确立共模电平。菊花链接口允许电池组的各AD7280 直接与其上或其下的AD7280 通信(从而沿着堆叠上下传递数字信息),而无需隔离。最底部AD7280 的SPI 接口用来与系统微控制器交换整个 电池组的数据和控制信号。此处必须采用高压电流隔离,以保护系统中的其它低压电子器件。

图1. 电池组中的串联电池监控和隔离

图 1 中,串联电池串的中间有一个开关或接触器。一般情况下,无论汽车正常行驶还是停车,该开关始终闭合。车辆维修时或紧急情况下,需将该开关拉开或离开所在位置,禁止电池 组端电极出现电池组电压。为了不影响开关断开所提供的隔离性能,必须确保没有任何电子器件桥接开关端子。因此,开关断开时,电池组的上半部分应与下半部分应保持电气隔离。这 意味着,电池组上半部分的电池数据必须通过其最底部的电池监控器通信,跨过隔离栅,传输至管理整个电池组数据流入流出的微处理器或微控制器。类似地,电池组下半部分也必须与 此微处理器或微控制器隔离,因此也有与上半部分相同的隔离栅。

除电池监控器外,电池组中还有一个电流监控器,用来测量并报告电池组的电流。该监控器一般放在电池组底部,也需要考虑隔离。霍尔效应电流传感器本身具有电流隔离功能,无需再 配置隔离电路。不过,如果该电流传感器采用分流元件,则相关的分流监控电路需要单独的隔离栅。使用分流方法检测电流越来越受欢迎,它比霍尔效应检测更稳定、更精确,而且价格 也更有竞争力。使用低值分流电阻和低成本、高分辨率监控电子器件(例如通过AEC-Q100 认证的AD820x 和AD821x 系列 分流监控器 , 至今针对汽车插座的出货量已超过1 亿片),可以将自发热降至极小,使这种方法的传统弊端不复存在。因此,除非电流检测监控器能够接入最底部的电池监控器,共用 其隔离栅,否则图 1 中的系统需要三个独立的隔离栅。另一种颇受欢迎的构建电池组方法是将电池包分为一系列电气独立的电池群组(图 2)。每个电池群组最底部的监控器跨过 专用隔离栅,将本地电池状况回传给非隔离端的微控制器.

另一种颇受欢迎的构建电池组方法是将电池包分为一系列电气 独立的电池群组(图 2)。每个电池群组最底部的监控器跨过专用隔离栅,将本地电池状况回传给非隔离端的微控制器。

图2. 并行接入电池包的电池组

这种方法会使用更多的数字隔离器,因此成本比图1 所示系统更高,但它可以同时要求所有电池群组报告电池组内电池监控器所监测到的信息,从而能在更短的时间内回读所有电池数 据。另一个好处是,当菊花链发生问题时,如断线或连接器接触不良等,备用监控器可以继续监控。将剩余电池包电压与总电池组电压进行相关分析,仍然可以确定停止工作电池包的数据。

这种方法的确需要更多电缆,由于高达 75% 的电磁兼容性(EMC) 问题与输入/输出(I/O) 端口有关,因此这可能会引发问题。 I/O 端口是一种开放式通路,供静电放电电荷、快速瞬变放电电荷或浪涌进入一台设备,以及供干扰信号逃逸——通过传导I/O 线路上的杂散信号,或者通过I/O 电缆的辐射。电池 组电缆较多的话,若不特别注意信号的稳定性以及所选的通信协议,其 EMC 性能会大幅下降。因此,与端口相连的 I/O 设备的 EMC 性能对于整台设备的 EMC 性能至关重要

颇受欢迎的SPI通信协议适合同一印刷电路板 (PCB) 上的器件之间通信,但单端信号可能难以经由 24 至36 英寸电线实现 可靠传输,尤其在高噪声环境中。如果数字信号要在板外传输,则谨慎起见,系统设计中可能需使用差分收发器,例如 ADM485. 这些收发器可以采用低端电源供电,无需直接耗用 电池组中的电池电源。

隔离技术是电池组通信的关键

为了提高电池组电压,以便满足重型私家车以及轻型卡车、货车的更高功率电机需求,必须增加电池组中的电池数量。除了增加串联电池数量之外,现在的许多电池包还含有并联电池串,目的是提高整个电池包的安培小时(AH) 容量。必须监控各并联电池串,因而需要收集大量数据。与所有这些电池相关的电池监控器数据,必须在系统集成商设定的系统环路时间要求范围内,可靠地回传给电池测量系统(BMS) 微控制器。

因此,跨越系统间边界提供可靠数据通信的难度也随之增加。获得汽车应用认证的隔离技术,正是跨越典型电池组内如此众多的隔离边界实现可靠通信的关键因素, ADI 公司就能够提供这种技术。该技术的基础是"磁隔离",变压器则采用高性价比标准 CMOS 工艺以平面方式制造(参见图3)。这有利于将多个隔离通道集成到单个器件中,或者将隔离通道与其它 半导体功能,如线路驱动器和模数转换器等(例如隔离Σ-Δ调制器AD7400 )集成于一体。

图3. 四通道隔离器ADuM1402功能框图

不像光耦合器,这些iCoupler®数字隔离器的性能在汽车整个使用期限内都不会下降,可以适应因季节变化经常会遇到的恶劣工作条件。表1 所列为最近发布的系列器件,这些器件已通过 AEC-Q100 认证,工作温度最高可达 125°C,所用材料与ADI 公司iCoupler 系列产品中广泛认可的对应器件相同,至今该系列出货量已超过3 亿片。表中双通道、3 通道和 4 通道 数字隔离器系列的数据速率最高可达25 Mbps,传播延迟低至32 ns。

表 1. 通过AEC Q100 认证的 i Coupler 隔离器

电源电压范围(V)3.5 to 5.5 V; 最大温度(°C) 125°C

平面变压器本身是双向的,因此信号可以沿任一方向传送。在总通道数范围内,驱动通道和接收通道可以任意组合使用。 例如,双通道 ADuM120xW、3 通道 ADuM130xW 和 4 通道ADuM140xW 单独或一起可提供7种不同的通道配置(4-0、3-1、2-2、3-0、2-1、2-0、1-1),确保所有情形下都能采用最 佳解决方案。图4归纳了可提供的各种不同配置。

图 4. ADuM120xW/ADuM130xW/ADuM140xW的七种不同配置

iCoupler 技术有两个突出特点:支持高数据速率,以及可以采用低电源电流工作。iCoupler 通道耗用的电源电流主要取决于它所承载的数据速率。采用 3V 电源工作、数据速率最高为 2 Mbps 时, ADuM140xWS 两端及所有四个通道的总电源电流典型值为1.6 mA(最大值4 mA)。因为在ADuM140xWS 的隔离端或"热"端,电源来自电池本身(通过一个稳压器),所以低功耗十分重要。监控器也采用同一电压源供电,因 此,监控和通信电路所有元件的功耗越低越好。所有隔离产品均提供小尺寸、薄型、表贴8 引脚SOIC_W或16 引脚SOIC_W封装,并且已通过 UL、CSA 和 VDE 安全认证。隔离额定值 最高可达2.5 kV(有效值),工作电压最高可达400 V(有效值)。

iCoupler 技术孕育出isoPower 集成式隔离电源

i Coupler 技术最激动人心的一项成果是将电源输送与信号传输集成在同一封装中。现在,利用与信号隔离所用的微变压器相似的技术,可以跨越隔离栅输送电源,从而为电池组中的数据 隔离器提供完全集成的远程供电解决方案。本地电源供给振荡电路,它通过一个芯片级空芯变压器切换电流。输送至隔离端的电源经过整流和调节,稳定在 3.3 V 或 5 V。隔离端控制器 通过产生一个PWM 控制信号,对输出进行反馈调节,该控制信号经由一个专用iCoupler 数据通道送回本地端。 PWM控制信号调制振荡器电路,以控制送至隔离端的电源。使用反馈功能可以明显提高功率和功效比。

ADuM540xW 是4 通道数字隔离器,内置isoPower®集成式隔离DC-DC 转换器;输入电源为5.0 V 或3.3 V 时,可提供最高500 mW的稳压隔离功率。与标准iCoupler 器件一样,它可提供多种不同的通道配置和数据速率。由于isoPower 器件利用高频开关元件通过其变压器输电,因此进行 PCB 布局时必须特别小心,确保符合电磁辐射标准。有关电路板布局考量因素 的详细信息,请参考应用笔记 AN-0971 :" isoPower器件的辐射控制建议"。ADuM540x 系列目前正在进行 AEC-Q100 认证。

作者:John Wynne

点击这里,获取更多IOT物联网设计信息

围观 5
209

作者:Brian Kennedy

许多应用都采用隔离式半桥栅极驱动器来控制大量功率,从要求高功率密度和效率的隔离式DC-DC电源模块,到高隔离电压和长期可靠性至关重要的太阳能逆变器等等,不一而足。本文将详细阐述这些设计理念,以展现采用小型封装的隔离式半桥栅极驱动器IC在造就高性能方面的卓越能力。

采用光耦合器隔离的基本半桥驱动器(如图1所示)以极性相反的信号来驱动高端和低端N沟道MOSFET(或IGBT)的栅极,由此来控制输出功率。驱动器必须具备低输出阻抗以减少传导损耗,同时还须具有快速开关能力以减少开关损耗。出于精度和效率的考虑,高端和低端驱动器需要具备高度匹配的时序特性,以便减少在半桥的第一个开关关闭,第二个开关开启前的停滞时间。

高压半桥栅极驱动器

图1. 高压半桥栅极驱动器

如图所示,这种功能的一种常规实现方式是用一个光耦合器进行隔离,其后用一个高压栅极驱动器IC。这种电路的一个潜在不足,就是单隔离输入通道依赖高压驱动器电路来实现所需要的通道间时序匹配和停滞时间。另一问题是,高压栅极驱动器并无电流隔离,而是依赖IC的结隔离来分离高端驱动电压和低端驱动电压。在低端开关事件中,电路中的寄生电感可能导致输出电压VS降至地电压以下。发生这种情况时,高端驱动器可能发生闩锁,并永久性损坏。

光耦合器栅极驱动器

另一种方法(如图2所示)利用两个光耦合器和两个栅极驱动器来实现输出之间的电流隔离,从而避免了高端-低端交互作用的问题。栅极驱动器电路往往置于与光耦合器相同的封装中,因而一般需要两个独立的光耦合器栅极驱动器IC来构成完整的隔离式半桥,结果使解决方案的物理尺寸变大。另需注意的是,两个光耦合器即使封装在一起,也是是独立制造的,从而限制了匹配两个通道的能力。这种失配会增加关闭一个通道与打开另一个通道之间的停滞时间,从而导致效率下降。

双光耦合器半桥栅极驱动器

图2. 双光耦合器半桥栅极驱动器

光耦合器的响应速度受到原边发光二极管(LED)电容的限制,而且将输出驱动至高达1 MHz的速度也会受到其传播延迟(最大值为500 ns)以及较慢的上升和下降时间(最大值为100 ns)的限制。要使光耦合器接近最高速度,需要将LED电流增加至10 mA以上,这会消耗更多功率,缩短光耦合器的寿命并降低其可靠性,尤其是在太阳能逆变器和电源应用中常见的高温环境下。

脉冲变压器栅极驱动器

接下来,我们来看看通过变压器耦合实现电流隔离的电路。这些电路的传播延迟较低、时序特性更精确,与光耦合器相比,具有速度优势。在图3中,采用的是一个脉冲变压器,其工作速度可以达到半桥栅极驱动器应用通常所需的水平(最高1 MHz)。栅极驱动器IC可用于提供容性MOSFET栅极充电所需的高电流。在此,栅极驱动器以差分方式驱动脉冲变压器的原边,两个副边绕组驱动半桥的各个栅极。在这种应用中,脉冲变压器具有显著优势,不需要用隔离式电源来驱动副边MOSFET。

脉冲变压器半桥栅极驱动器

图3. 脉冲变压器半桥栅极驱动器

然而,当感应线圈中流动的较大瞬态栅极驱动电流导致振铃时,就可能出现问题。结果可能使栅极不合需要地开启和关闭,从而损坏MOSFET。脉冲变压器的另一个局限在于,它们在要求信号占空比在50%以上的应用中可能表现欠佳。这是由于脉冲变压器只能提供交流信号,而且铁芯磁通量必须每半个周期复位一次以维持伏秒平衡。最后一点不足:脉冲变压器的磁芯和隔离式绕组需要相对较大的封装,再加上驱动器IC和其他分立式元件,最终形成的解决方案可能尺寸过大,无法适应许多高密度应用。

数字隔离器栅极驱动器

现在,我们来看看把数字隔离器用在隔离式半桥栅极驱动器中的情况。图4中的数字隔离器使用标准CMOS集成电路工艺,以金属层形成变压器线圈,并以聚酰亚胺绝缘材料来分离线圈。这种组合可以实现5 kV rms以上(1分钟额定值)的隔离能力,可用于鲁棒型隔离电源和逆变器应用。

采用变压器隔离的数字隔离器

图4. 采用变压器隔离的数字隔离器

如图5所示,数字隔离器消除了光耦合器中使用的LED以及与之相关的老化问题,而且功耗更低、可靠性更高。输入与输出以及输出与输出之间提供电流隔离(虚线),以消除高端-低端的交互作用。输出驱动器通过低输出阻抗降低导通损耗,同时通过快速开关时间降低开关损耗。

采用数字隔离的4 A栅极驱动器

图5. 采用数字隔离的4 A栅极驱动器

与光耦合器设计不同,高端和低端数字隔离器以单个集成电路为基础制造而成,其输出天生匹配,具有更高的效率。请注意,图1所示高压栅极驱动器集成电路会增加电平转换电路中的传播延迟,因而不能像数字隔离器一样实现通道间时序特性的匹配。另外,在单个IC封装中同时集成栅极驱动器和隔离机制可以最大限度地减小解决方案的尺寸。

共模瞬变抗扰度

在针对高压电源的许多半桥栅极驱动器应用中,开关元件中可能发生极快的瞬变。在这些应用中,在隔离栅上发生容性耦合的、快速变化的瞬态电压(高dV/dt)可能在隔离栅上造成逻辑瞬变错误。在隔离式半桥驱动器应用中,这种情况可能在交叉传导过程中同时打开两个开关,因而可能损坏开关。隔离栅上的任何寄生电容都可能成为共模瞬变的耦合路径。

光耦合器需要以敏感度极高的接收器来检测隔离栅上传递的少量光,而且较大的共模瞬变可能扰乱其输出。可以在LED与接收器之间添加一个屏蔽,从而降低光耦合器对共模瞬变电压的敏感度,这种技术被运用在多数光耦合器栅极驱动器中。该屏蔽可以提高共模瞬变抗扰度(CMTI),从标准光耦合器不到10 kV/μs的额定值提升至光耦合器栅极驱动器的25 kV/μs。虽然该额定值对许多栅极驱动器应用都是合适的,但是对于瞬变电压较大的电源以及太阳能逆变器应用来说,可能需要CMTI达到50 kV/μs或以上。

数字隔离器可以向其接收器提供更高的信号电平,并能承受极高的共模瞬变而不会导致数据错误。作为四端差分器件,基于变压器的隔离器可向信号提供低差分阻抗,向噪声提供高共模阻抗,从而实现出色的CMTI性能。另一方面,利用容性耦合形成不断变化的电场并在隔离栅上传输数据的数字隔离器是双端器件,因而噪声和信号共用一个传输路径。对于双端器件,信号频率需要远高于预期的噪声频率,以便隔离栅电容对信号提供低阻抗,而对噪声提供高阻抗。当共模噪声电平大到足以淹没信号时,则可能扰乱隔离器输出端的数据。图6所示为基于电容的隔离器中发生数据扰乱示例,其中,输出信号(通道4,绿线)在仅10 kV/μs的共模瞬变过程中下降了6 ns,造成毛刺。

基于电容的数字隔离器(CMTI <10 kV/μs)

图6. 基于电容的数字隔离器

图中数据是在基于电容的隔离器瞬变的扰乱阈值下采集的;如果瞬变要大得多,结果可能使扰乱持续更长时间,从而使MOSFET开关变得不稳定。相比之下,基于变压器的数字隔离器能够承受超过100 kV/μs的共模瞬变,而输出端不会出现数据扰乱问题(图7)。

图7. 基于变压器的数字隔离器(CMTI为100 kV/μs,ADuM140x)

隔离式半桥驱动器提供4 A峰值输出电流

ADuM3223/ADuM4223隔离式半桥栅极驱动器(如图8所示)采用iCoupler® 技术以独立的隔离式输出来驱动电机控制、开关电源和工业逆变器中所使用的高端和低端IGBT及MOSFET器件的栅极。这些隔离组件集高速CMOS与单芯片变压器技术于一体,可提供精密时序、高可靠性以及优于光耦合器或脉冲变压器的整体性能。相对于输入,各路输出的持续工作电压最高可达565 VPEAK,因而支持低端切换至负电压。高端与低端之间的差分电压最高可达700 VPEAK。输出开关频率最高可达1 MHz,可提供4 A的峰值电流。CMOS兼容型输入可提供50 kV/μs的共模瞬变抗扰度。驱动器采用3.0 V至5.5 V的输入电源,可兼容低电压系统。其额定工作温度范围为–40°C至+125°C,采用16引脚SOIC封装。ADuM3223的千片订量报价为1.70美元/片,采用窄体设计,可提供3 kV rms的隔离能力。ADuM4223的千片订量报价为2.03美元/片,采用宽体设计,可提供5 kV rms的隔离能力。

图8. ADuM3223/ADuM4223框图

总结

对于隔离式半桥栅极驱动器应用,事实表明,相对于基于光耦合器和脉冲变压器的设计,集成变压器的数字隔离器具有众多优势。通过集成大幅降低了尺寸和设计复杂性,从而极大地提高了时序特性。输出驱动器采用的电流隔离技术则改进了鲁棒性,变压器耦合技术则显著提高了CMTI。

参考文献

Coughlin, Chris. 技术文章,共模瞬变抗扰度。此文的一个版本于2012年5月作为技术文章MS-2318发布,标题为“隔离式半桥栅极驱动器的实现”。

作者简介

Brian Kennedy [brian.kennedy@analog.com]是ADI公司数字隔离器部门的应用工程师。他于2008年4月加入ADI公司,负责电源数字隔离产品。他拥有纽约州立大学(布法罗校区)电气工程学士学位(BSEE)。

点击这里,获取更多电机控制设计信息

围观 26
422

页面

订阅 RSS - 隔离