ADC

作者:Walt Kester

简介

用于定量表示ADC动态性能的常用指标有六个,分别是:SINAD(信纳比)、ENOB(有效位数)、SNR(信噪比)、THD(总谐波失真)、THD + N(总谐波失真加噪声)和SFDR(无杂散动态范围)。对于这些指标,虽然大部分ADC制造商采用相同的定义,但也存在一些例外。比较ADC时,这些指标非常重要,因此不仅要了解各指标反映哪一方面性能,而且要明白它们之间的关系。

有多种方法可以量化ADC的失真和噪声,但所有方法均基于一种使用一般化测试设置的FFT分析,例如图1所示的设置。

图1:用于对ADC输出进行FFT分析的一般化测试设置

FFT的频谱输出是频域中连续的M/2个点(M为FFT的大小,即缓冲存储器中存储的采样点数)。两点之间的间隔为fs/M,覆盖的总频率范围为DC至fs/2,其中fs为采样速率。各频率“仓”的宽度(有时也称为FFT的“分辨率”)为fs/M。图2所示为使用ADI公司ADIsimADC®程序得到的一个理想12位ADC的FFT输出。注意,FFT的理论噪底等于理论SNR加上FFT“处理增益”10×log(M/2)。必须记住,用于计算SNR的噪声值是分布于整个奈奎斯特带宽(DC至fs/2)的噪声,而FFT用作一个带宽为fs/M的窄带频谱分析仪,它扫描整个频谱,其结果是将噪声下推一个与处理增益相等的量,该效应与模拟频谱分析仪的带宽窄化相同。

详文请阅:了解SINAD、ENOB、SNR、THD、 THD + N、SFDR,不在噪底中迷失

围观 21
126

Maithil Pachchigar 应用工程师 ADI公司

工业过程控制、便携式医疗设备和自动化测试设备中使用的多路复用数据采集系统(DAS)需要更高的通道密度;在这些系统中,用户希望测量多个传感器和监控器信号,并将很多输入通道扫描至单个ADC或多个ADC中。多路复用的整体优势在于每通道所需的ADC数量较少,节省了印刷电路板(PCB)空间,降低了功耗和成本。自动化测试设备和电源线路监控应用中的某些系统要求每通道使用专门的采样保持放大器和ADC,以便对输入进行同步采样,从而提升每通道的采样速率,并保留相位信息,但代价是更多的PCB面积和更高的功耗。系统设计人员根据最终应用的性能、功耗、尺寸和成本要求进行权衡取舍。它们从中选出一个转换器架构和拓扑,并使用市场上提供的分立式或集成式元件实现信号链设计。图1显示了多路复用DAS的简化框图,可进行监控并对多种传感器类型进行顺序采样。某些情况下,信号链会利用多路复用器与ADC之间的缓冲放大器或可编程增益放大器。

图1. 典型多路复用数据采集系统

当多路复用器切换通道时,在其输入端会产生小电压毛刺或反冲。该反冲与多路复用器的开启和关断时间、导通电阻以及负载电容成函数关系。具有低导通电阻的大开关通常需采用大输出电容,而每次输入端开关时,都必须将其充电至新电压。如果输出未能建立至新电压,则将产生串扰误差。因此,多路复用器带宽必须足够大,且多路复用器输入端必须使用缓冲放大器或大电容,才能建立至满量程阶跃。此外,流过导通电阻的漏电流将产生增益误差,因此这两者都应尽可能小。

SAR与Σ-Δ型ADC架构的对比

图2显示了基于电荷再分配电容数模转换器(DAC)阵列的逐次逼近型寄存器(SAR)的基本转换器架构。它在每一个转换开始的边沿上对输入信号进行一次采样,在每一个时钟边沿上进行位对比,并通过控制逻辑调节数模转换器的输出,直到该输出极为接近地匹配模拟输入。因此,它需要来自独立外部时钟的N个时钟周期,以便以迭代方式实现单次N位转换。

图2. 基本SAR ADC架构

图3显示了基本的Σ-Δ型ADC架构,它以调制器的过采样频率(KfS)对模拟输入信号连续采样,其转换输出为KfS处系列采样的加权均值。分辨率较高的Σ-Δ型ADC转换时间较长,因为需要2N次采样才能完成单次转换。

图3. 基本Σ-Δ型ADC架构

内部比较器噪声和DAC线性度决定SAR ADC转换的精度,而调制器中积分器的建立时间(开关)则决定Σ-Δ型ADC转换的精度。SARADC面临的一个挑战是,驱动器放大器需要在一次转换结束与下次转换起始之间的采集时间内建立其模拟输入端注入的开关瞬变电流。

SAR ADC的输入带宽(数十MHz)比采样频率高。所需输入信号带宽一般在数十到数百kHz内,因此,需要用抗混叠滤波器过滤掉折回目标带宽的无用混叠信号。在Σ-Δ型ADC的情况下,所需输入信号带宽通常在DC至几kHz之间,数字滤波器的输入带宽低于调制器的采样频率,因此,放宽了抗混叠要求。数字滤波器滤除目标带宽以外的噪声,抽取器则降低输出数据速率,使其回落至奈奎斯特速率。

多路复用应用面临的挑战

精密SAR ADC因为易用性、低功耗、小封装和低延迟等特点而在很多应用中广受青眯,简化了多路复用DAS的快速通道切换。

精密Σ-Δ型ADC具有卓越的带外抑制性能,而且在实现斩波功能的情况下,能抑制接近直流(50 Hz/60 Hz)的1/f噪声成分,因而广泛运用于工业应用和音频应用中。在这种情况下,ADC的采样速率是用高分辨率换来的。

SAR ADC固有异步属性,可以快速设计控制环路,转换相关的延迟或流水线延迟几乎为零,并且对接近满量程的步进输入能作出快速响应——因此,它是很多多路复用应用的普遍选择。而Σ-Δ型转换器架构一般具有单调性(这意味着它能在任意时间点转换),并采用集成式调制器来实现要求以一个全局内部或外部时钟源来同步所有内部模块的过采样和数字抽取滤波——结果导致非零周期延迟或建立时间问题。有些系统也依赖于统一的多通道数字化过程,其低延迟使采用SAR ADC的通道切换更方便快速。除了数字滤波器的延迟(群延迟),Σ-Δ型ADC还常用于多种类型的传感器多路复用——比如温度、压力或称重传感器——从而以较低的输出数据速率获取小电压变化,比如过程控制。这主要是因为它具有较高的分辨率、精度、噪声和动态范围性能,而SAR ADC通常要求每个通道配备低通滤波器或进行缓冲,结果会在空间和成本方面使问题复杂化。

某些精密SAR ADC较高的吞吐速率允许在数字化处理中以较高的扫描速率对多个通道进行多路复用,因而所需的ADC数量较低,节省了PCB面积和成本。精密Σ-Δ型ADC可以进行多路复用的输出数据速率受限于数字滤波器类型的建立时间,这就限制了其为多路复用器通道建立快速满量程瞬态的能力。建立时间还会因所使用的数字滤波器类型而不同。用户必须等到数字滤波器的建立时间完全结束,才能取得有效的转换结果,然后才能切换到下一个通道。某些内置sinc (sinx/x)数字滤波器的Σ-Δ型ADC允许在单个周期内完成建立或零延迟,方法是屏蔽内部数字滤波器结果,同时在第一个转换周期内、或在开始新的采样周期前输出完全建立的数据结果。这些ADC的输出数据速率始终低于其完全建立的延迟时间过后的速率。

两类精密ADC在多路复用应用中面临的共同问题是带宽、建立时间和输入范围要求。在一个多路复用DAS中,当输入通道切换到下一通道时,一个重大难题是ADC必须支持大电压幅度步进的变化和快速转换(哪怕是直流信号),因为输入步进可能从负满量程电压(有时候是接地)转换为正满量程电压,反之亦然。换言之,两个输入通道之间会在很短的时间内产生大电压步进,并且ADC输入必须要能够建立这个大电压步进。这为ADC驱动器带来了额外负担,而且在这种情况下,ADC驱动器的大信号带宽性能成为了选择ADC驱动器的关键规格。在大幅度步进的情况下,非线性效应显现,并且压摆率和输出电流特性会限制ADC驱动器的性能和输出响应。多路复用器通道开关必须与ADC转换引脚同步,并且在启动转换之后应当等待一段较短的开关延迟(几十ns),然后再切换到下一通道,这样可以有充分的时间建立所选通道。为了保证最大吞吐速率时的性能,多路复用系统的所有元件都必须在多路复用器切换与下一次转换开始之间的时间里在ADC输入端完成建立。

集成式和分立式多路复用精密DAS解决方案如今,市场上有集成式和分立式两类多路复用应用解决方案,具体取决于客户的需求。分立式多路复用解决方案的优势是,在基于性能求选择合适的信号调理组件时具有较大的灵活性。

用户仍然需要面临与通道切换、时序和建立时间相关的复杂设计问题。我们也可以认为,如果用户可以切换多路复用器输入通道,进行外部校准以排除误差,灵活性仍然存在,但是,结果很可能会增加电路板尺寸和成本,牺牲性能和灵活性。有些客户也会出于灵活性考虑,偏好自行对FPGA实施定制数字滤波,而不采用片内集成的滤波器。

如果客户使用集成式多路复用解决方案,则无需担心通道切换、时序和建立时间问题。另外,这种方式可以提供独立通道配置,而且带有不同的输入范围和误差校准选项。这种情况下,客户在信号调理方面的灵活性较低,但该方式可以简化设计,节省面积和物料成本,同时还具有充足的性能。当今市场上现有的部分高度集成式SAR和Σ-Δ型ADC可以克服在设计精密DAS时面对的诸多挑战。这些IC消除了对输入信号进行缓冲、电平转换、放大、衰减或以其他方式调理的必要性。它们还消除了共模抑制、噪声、通道切换、时序和建立时间等方面的担忧。

选择SAR或Σ-Δ型转换器架构时,系统设计人员应当根据多路复用数据采集系统的性能、功耗、尺寸和成本要求考虑本文中的设计优缺点。

作者简介

Maithil Pachchigar [maithil.pachchigar@analog.com] 是ADI公司麻萨诸塞州威明顿市仪器仪表、航空航天与国防业务部门的应用工程师。他于2010年加入ADI公司,致力于仪器仪表、工业、医疗保健和能源行业的精密ADC产品系列工作和客户支持。自2005年以来,Maithil一直在半导体行业工作,并已发表多篇技术文章。他于2006年获得圣何塞州立大学电气工程硕士学位,并于2010年获得硅谷大学MBA学位。

点击这里,获取更多工业自动化技术信息

围观 25
196

作者:Miguel Usach Merino和Gerard Mora-Puchalt

摘要

ADI 专利的容性可编程增益放大器(PGA)相比传统的阻性PGA具有更佳的性能,包括针对模拟输入信号的更高共模电压抑制能力。

本文描述了斩波容性放大器的工作原理,强调了需要放大传感器小信号至接近供电轨——比如温度测量(RTD 或热电偶)和惠斯登电桥——时,此架构的优势。

Σ-Δ 型模数转换器(ADC)广泛用于传感器具有较小输出电压范围和带宽的应用中(比如应变计或热敏电阻),因为这种架构提供高动态范围。具有高动态范围是因为,相比其它 ADC 架构,它具有低噪声性能。

Σ-Δ 型转换器基于两条原理工作:过采样和噪声整形。当 ADC对输入信号进行采样时,独立于采样频率的量化噪声会在直到采样频率一半的整个频谱内扩散。因此,如果输入信号以比奈奎斯特理论所推导出的最小值高很多的频率采样,则目标频段内的量化噪声下降。

图 1 显示了不同采样频率下的量化噪声密度示例。

图 1. 不同采样频率下,频率范围内的量化噪声密度。

一般而言,对于特定的目标频段,每 2 个过采样系数就会使动态范围改善 3 dB(假定为白噪声频谱)。Σ-Δ 型转换器的第二个优势是噪声传递函数。它将噪声整形至更高频率(如图 2 所示),进一步降低了目标频段内的量化噪声。

图 2. Σ-Δ 噪声整形。

此外,Σ-Δ 架构可能集成数字滤波器,用来移除目标频段外的量化噪声,实现出色的动态范围性能,如图 3 所示。

图 3. LPF 之后的量化噪声。

输入缓冲器

过采样架构的缺点之一是,相比其它采样频率较低的架构,驱动 Σ-Δ 型调制器的输入缓冲器要求可能会更严格。采集时间变得更短,因此缓冲器需要更高带宽。现代 Σ-Δ 型转换器片上集成输入缓冲器,最大程度简化使用。

此外,在检测系统中,为检测元件提供具有高精度的极高输入阻抗对于测量精度而言极为关键。这使得输入缓冲器的要求更为严格了。

集成输入缓冲器还有其它挑战。Σ-Δ 型调制器可在低频率时提供极低噪声,但所有其它元件(比如输入缓冲器)都会使热噪声增加,而更严重的则是低频闪烁噪声,如图 4 所示。

图 4.闪烁噪声。

此外,缓冲器失调也可能增加总系统误差。通过系统校准可以补偿失调,但如果失调漂移相对较高,那么这种方式就无法实现,因为每次工作温度发生改变都会要求系统重新校准,以补偿缓冲器失调。

例如,当失调漂移为 500 nV/°C 时,10°C 温度递增将等于 5 µV失调范围,在±2.5 VREF 24 位 ADC 中这相当于 16.8 LSB,即约为 4 位。解决这两个问题的典型途径是对缓冲器的输入和输出进行斩波,如图 5 所示。

图 5.斩波放大器。

对输入进行斩波之后,输入频率便调制到较高频率。缓冲器失调和闪烁噪声依然保持其最初的低频率,因为它们不受输入斩波的影响。

输出去斩波机制将输入频率解调回基带,同时向上调制缓冲器产生的失调和闪烁噪声至较高频率,随后由 ADC 低通滤波器加以消除。

某些情况下,输入缓冲器可以采用基于电阻的仪表放大器(阻性 PGA)来代替,以使小传感器信号满足全调制器输入范围,最大程度提升动态范围。需注意,基于电阻的仪表放大器相比差分阻性放大器是更好的选择,因为分立式传感器需要更高的输入阻抗。阻性 PGA 可实现类似的斩波方案,如图 6 所示。

图 6.阻性 PGA。

阻性 PGA 可能需要级联第二组缓冲器,因为放大器可能无法提供直接驱动调制器所需要的足够带宽。同时,必须保持低功耗,这就确定了电阻值,进而确定了放大器带宽。

使用这种放大器拓扑的主要问题是,它限制了共模电压——尤其是在增益大于 1 的时候,因为阻性 PGA 具有取决于输入信号的浮动共模值,如图 6 所示。

此外,阻性网络失配及其漂移也是影响总误差预算的因素之一,因为它可能会影响大多数的精度规格。为避免这些限制,最新的 Σ-Δ 型转换器采用了容性 PGA。

容性 PGA 放大原理与阻性 PGA 相似:增益取决于电容比,如图 7 所示。为了放大直流信号,容性 PGA 在 PGA 输入端引入了斩波机制直流输入信号调制到斩波频率,然后由容性放大器进行放大。最后,信号通过输出去斩波解调回直流。此外,放大器失调和闪烁噪声调制到斩波频率,并在之后的级中进行低通滤波。

图 7.容性 PGA(为简便起见,移除了部分模块)。

相比阻性架构,这种容性架构有一些优势:

它能更好地权衡噪声与功率,因为噪声源较少。需要较少的放大器,而且相比电阻,电容不会产生噪声。

电容比电阻有非常多的优势。除了无噪声外,电容不会受到自发热影响,且通常具有更好的匹配和温度漂移。这对失调、增益误差和漂移规格有正面影响。

电容可将输入共模从信号链共模的其余部分去耦。这样可以提供 CMRR、PSRR 和 THD 等优势。

容性 PGA 的最大优势之一,是它的输入共模范围可以是轨到轨或更高。这样便有可能从正供电轨下至负供电轨的几乎任何地方对传感器共模电压进行偏置。

这种容性架构结合了仪表放大器的优势,具有极高的输入阻抗(因为输入阻抗是一个电容),其优势是电容(而不是电阻)作为增益元件,增加了放大器的动态范围——这不仅是因为它的信号摆幅,还因为其噪声效率的缘故。

克服阻性PGA共模限制的常见解决方案是增加或偏移供电轨,或者重新对中传感器信号共模。这样做的代价是功耗更高、电源设计更复杂、使用更多外部元件,以及更高的成本。

实际例子

在惠斯登电桥中,共模电压由连接两个桥臂的阻抗决定,且与施加的电源成正比。电子秤应用即采用这种检测拓扑,因为它具有针对应变计的线性检测优势;图 8 显示了一个半桥式 II类电路。

图 8.采用惠斯登拓扑并包含应变计的电子秤。

表 1. 惠斯登电桥中的阻性 PGA 和容性 PGA 对比(假设使用标准电源和增益)

应变计的灵敏度通常为 2 mV/V。惠斯登电源越高,灵敏度也就越高。为了增加应变计的动态范围并最大化 SNR,电桥可能采用比 ADC 更高的电源供电。

由于阻性 PGA 的共模限制,电桥应当采用与 ADC 相同的电源供电,以便最大程度提升动态范围;而在容性 PGA 中,电桥可以采用几乎为 ADC 两倍的电源供电,因为不存在输入共模的限制。

例如,假设标准电源为 ADC 提供 3.3 V 电平,则对于相同的增益,容性 PGA 相比阻性 PGA 的改进总结见表 1。可能存在的另一个问题,是当电桥的连接位置离 ADC 较远时,接地之间可能有所不同。这也许会使共模电压偏移,从而导致ADC 输入共模相对于电桥不平衡,并降低阻性 PGA 中的最大允许增益。

使容性 PGA 性能与阻性 PGA 相当的可行办法是以更高的电源电压对电桥供电。比如,以±3.3 V 双极性电源对电桥供电,从而增加应变计的灵敏度,但代价是更高的系统复杂性和功耗。可能会得益于容性 PGA 的另一个例子是采用电阻式温度检测器(RTD)或热电偶的温度测量应用。常用 RTD 电阻(比如 PT100)可以用来直接检测温度,或间接检测热电偶的冷结,如图 9 所示。

图 9.典型热电偶设置。

每一个 PT100 器件都提供不同的导线,采用最受欢迎的高性价比三线式配置。

测量温度并消除引线误差的传统方法如图 10 所示。本例中,集成 PGA 的 Σ-Δ 型 ADC AD7124-8 的内部电流源以相同电流驱动双线式 RTD,在两个引线上产生相同的失调误差,其值与引线电阻成正比。

由于 AD7174-8 具有较小的引线电阻和电流(为了最大程度减少自发热效应),RL3 产生的失调电压靠近负供电轨,极大地降低了阻性 PGA 中允许的最大增益,因为其输入共模相比容性 PGA 同样将会非常接近供电轨,在内部将共模电压设为电源供电轨的一半,允许更高的增益配置,从而提高总动态范围。建议的解决方案极大降低了系统和硬件连接的复杂性,因为第三条线缆不应返回至 ADC PCB,并可连接 RTD 位置附近的地。

图 10.三线式 RTD 测量。

为了增加温度测量的精度,建议采用四线式测量。本例中,只使用了一个电流基准。为了避免电流源的不精确性,可以将精密电阻用作 ADC 基准电压发生器来进行比例测量,如图 11 示。

图 11.比例四线式 RTD 测量。

选择适当的外部精密电阻值,使 RTD 上产生的最大电压等于基准电压除以 PGA 增益。

对于 3.3 V 电源而言,在阻性 PGA 中,精密电阻上产生的电压应为 1.65 V 左右,否则 PGA 共模电压将限制最大增益。其结果是,最大增益信号应等于 1.65 V。在容性 PGA 中,不存在输入共模的限制,因此 RTD 共模信号可以靠近顶部供电轨放置,最大程度提升了精密电阻生成的 ADC 基准电压,并因此实现最高的可选增益和动态范围。

表2. 四线式 RTD 比例测量中的阻性和容性 PGA 对比

表 2 总结了阻性 PGA 相对于容性 PGA 的最大增益,最大电流源为 500 µA,限制了 Pt100 的自发热(假定 B 类 RTD,此时最高温度为 600°C,最大 VREF 为 2.5 V)。

结论

相比阻性 PGA,容性 PGA 具有多项重要优势。诸如噪声、共模抑制、失调、增益误差以及温度漂移等关键规格都由于电容作为增益元件的固有温度稳定性以及匹配属性而得到了改善。

另一项重要特性是内部共模电压从放大器内部共模电压中去耦。当待放大的输入信号为靠近供电轨的共模电压时,这点尤为重要。阻性 PGA 的增益选择严重受限于其共模限制,或者要求更高的供电轨或外部元件将输入信号重新偏置到供电轨的一半。而容性 PGA 却可以轻松处理这种检测场景。某些最新的 Σ-Δ 型 ADC 产品集成了容性 PGA,比如 AD7190、AD7124-4、AD7124-8 和 AD7779。

作者简介

Miguel Usach Merino [miguel.usach@analog.com]获得瓦伦西亚大学电子工程学位。2008 年加入 ADI 公司,任西班牙瓦伦西亚线性与精密技术部的应用工程师。

Gerard Mora-Puchalt [gerard.mora-puchalt@analog.com]于 2005 年获得瓦伦西亚理工大学电信工程硕士学位。他于 2005 年在 ADI 公司 DAC 应用部门完成了毕业设计,并于 2006 年毕业后加入了 ADI 公司的温度传感器设计评估团队。他于 2007 年调往精密转换器部门,自此之后便担任模拟设计工程师,工作地点在西班牙瓦伦西亚。

点击这里,获取更多电机控制设计信息

围观 20
372

作者:Miguel Usach Merino

摘要

新的国际标准和法规加速了工业设备对安全系统的需求。功能安全的目标是保护人员和财产免受损害。这可以通过使用针对特定危险的安全功能来实现。安全功能由一系列子系统组成,包括传感器、逻辑和输出模块,因而需要系统层面和集成电路层面的专门技能来提供具有适当功能组合的IC。本文以AD7770 ∑-Δ ADC为例,探讨如何构思和设计高性能IC以提供模拟域和数字域中的先进特性组合,从而简化安全系统的设计。

简介

墨菲定律变体之一:“如果几件事都可能出错,首先出错的往往是会造成最大损失的那一件。”

如果一个系统可能产生直接或间接的致命威胁,例如机器故障等,那么设计该系统时,必须最大程度地降低故障可能性及其导致的负面影响。为了确保发生随机性和确定性故障的概率尽可能低,必须遵循特定的设计方法。工业中将这种设计方法称为功能安全方法。这种方法要求对系统进行细致入微的分析,确定所有潜在的危险情况,并运用最佳做法来将器件、子系统和系统的故障风险(例如电压过高或诊断失败等)降至容许的水平。

功能安全背后的理念是当检测到错误时让系统保持安全状态,例如:若来自外部传感器的转换结果超出范围,则断开使能的输出连接。

IEC-61508是工业设备功能安全设计参考标准,已针对不同行业进行了修改或阐释,例如ISO-26262适用于汽车行业,IEC-61131-6适用于可编程控制器。

详文请阅:了解并延续∑-Δ ADC的安全运行

点击这里,获取更多电机控制设计信息

围观 68
402

Analog Devices, Inc. (ADI)近日推出一款射频(RF)模数转换器(ADC),可实现业界领先的速度和带宽。与传统的射频ADC相比,新型AD9213具有更高的参数性能和更大的奈奎斯特带宽,并且能够在更高的模拟输入频率下进行射频采样,可实现高达7 GHz的射频信号的数字化。AD9213支持航空航天、仪器仪表以及通信领域的新一代软件定义系统,助力实现更高的系统集成度,更低的成本以及更小的尺寸、重量和功耗(SWaP)。此外,其高采样速率和集成的后处理功能有助于在窄带应用中实现更高的性能。

查看产品页面、下载数据手册和申请样片:http://www.analog.com/pr180522/AD9213
了解有关ADI公司高速转换器的更多信息:http://www.analog.com/pr180522/high-speed-converters
AD9213为航空航天客户提供了更大的灵活性,能够更大范围地处理频谱,并且可在雷达设计中实现更高的分辨率和更长的距离。该器件有助于电子测试和测量制造商(ETM)在时域应用(例如数字示波器和光谱/化学分析)中实现更大的产品差异化和新的性能水平。其奈奎斯特带宽更宽,便于卫星通信客户提供带宽更高的产品。此外,宽输入带宽与高采样速率相结合,可在无线通信应用中实现新型的宽带数字预失真架构。

AD9213产品聚焦:

* 采样速率为其他类似器件的2.5倍
* 系统动态范围更大,能够更好地区分信号
* 在较宽的信号带宽上具有出色的噪声性能
* 针对相控阵应用的增强型多芯片同步
* 时间分辨率提高(采样速率更高)

报价与供货

关于ADI公司

Analog Devices, Inc.是全球领先的高性能模拟技术公司,致力于解决最艰巨的工程设计挑战。凭借杰出的检测、测量、电源、连接和解译技术,搭建连接现实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。详情请浏览ADI官网http://www.analog.com/pr180522

欲浏览官方网站上的ADI新闻,请访问:http://www.analog.com/pr180522/news

欲订阅ADI公司的每月技术杂志Analog Dialogue《模拟对话》,请访问:http://www.analog.com/pr180522/analogDialogue

更多有关产品信息,请致电亚洲技术支持中心:400 6100 006, 或发送邮件至china.support@analog.com,也可点击ADI官方微博http://weibo.com/analogdevices,或通过手机登录m.analog.com 或http://www.analog.com/pr180522 了解最新产品等信息。

更多ADI产品及应用视频,请访问:http://www.analog.com/pr180522/videos

点击这里,获取更多IOT物联网设计信息

围观 31
346

页面

订阅 RSS - ADC