ADC

作者:Christoph Kämmerer

简介

还不熟悉ADC?使用包含多路复用器、PGA、缓冲器、∑-Δ转换器、VREF和电源的复杂系统时,是否感到很困惑,不知道从哪里开始?这就是Virtual Eval大展身手的地方。改变ADC模拟输入、PGA增益、基准电压源或电源,查看对阶跃响应、幅频特性或转换器直方图的影响。

该系列第一个成员是AD7124-8虚拟评估板。

为什么采用虚拟方式?

一个设计的整体性能是由该设计中单颗芯片的性能所决定的。尽管产品数据手册提供了芯片性能的第一手资料,但评估板通常被用于更好地了解各个电路的完整设计。它们可直接测试转换器、放大器和绝缘体等产品。尽管如此,评估板有一个严重的缺点。

它们需要单独订购,还要连接至测量仪器,并且当测试各种不同评估板以查找最佳配置时,整个过程非常耗时且成本高昂。为避免这种复杂情况,ADI公司开发了一款在线工具Virtual Eval,可以让设计人员使用仿真功能来评估转换器。此工具无需消耗物料成本,而且还能在设计初选阶段节省大量时间。

Virtual Eval可访问最新最全的ADI公司转换器数据库。一方面,这可以准确仿真转换器的对应环境,另一方面,它可以在不同场景和边界条件下进行测试。图1中,我们使用AD7124模数转换器(ADC)来解释工具的不同选项和用法。AD7124是一款24位∑-Δ转换器,并且包含了很多诊断功能,如线缆连接或短路的检测。

Virtual Eval的第一步就是让用户查看完整的转换器方框图(图1)。直接点击转换器对应的内部模块,就可以设置芯片参数来仿真真实应用场景。例如,被设置的模块可以是输入放大器或者多路选择器。可配置模块还会显示在屏幕左侧的设置中。对于AD7124,其他可配置模块包括SINC4+1 或者 SINC4的滤波器设置、内部时钟和基准电压源。其他一些可以设置的参数包括转换转换速率和时序。

Virtual Eval工具显示的AD7124方框图

图1. Virtual Eval工具显示的AD7124方框图。

设置好所有参数后,可以直观显示仿真结果并评估转换器的性能。首先,可以显示输入波形(图2a)。此外,还可以计算输入信号的快速傅立叶变换(FFT)。直方图(图2b)可以使用户确定统计数据和转换器精度。

a)输入信号的波形。b)输入信号的直方图

图2. a)输入信号的波形。b)输入信号的直方图。

其次,Virtual Eval还可显示信号的频率响应曲线和时域响应功能(图3a)。通常来说,被选择的转换器需要符合奈奎斯特采样定律。借助时域响应功能,可以计算最大输入频率的确切值,包括安全裕度。时域响应功能的上升时间只能通过选择合适的ADC转换率来解决——如果转换率不足,数据就会丢失。最后,时序图显示AD7124的时间响应(图3b),允许仿真不同场景,如功耗降低或转换率提升。

HB1滤波器响应——DDC实数模式(复数转实数模块使能)

图3. HB1滤波器响应——DDC实数模式(复数转实数模块使能)。

结语:

Virtual Eval模数转换器仿真工具可简单仿真不同条件和场景下的不同ADC。这种方法不仅经济实惠,还能显著缩短器件选型过程,让设计人员可以挑选合适的转换器,不再需要任何评估板和昂贵的测试。一旦选好转换器,就能在工具的帮助页面中找到转换器的相关设计资料——包含数据手册和详细信息。不久之后,数据库将会扩展到集成模块中,包括,例如带集成转换器的AMR传感器。

测验:

可编程增益放大器设置为128,差分输入电压为0.1 V时,AD7124-4会发生怎样的情形(提示:什么是差分输入?)。基准电压设置为2.5 V,电源:AVDD = 3.3 V,IOVDD:2.7 V(任何其它帮助保持标准设置的数值)。请计算自己的数值并使用Virtual Eval工具进行仿真。

作者介绍:

Christoph Kämmerer [christoph.kaemmerer@analog.com]自2015年2月开始担任ADI公司现场应用工程师。他于2014年毕业于埃尔朗根-纽伦堡大学,获得物理学硕士学位。毕业之后,他曾在利默里克市ADI公司担任工艺开发实习生。2016年12月实习结束后,Christoph正式成为ADI公司的现场应用工程师,擅长新兴应用领域。

点击这里,获取更多电机控制设计信息

围观 13
320

鸡鸣过后,太阳还没完全从地平线跳出来,空气中含着些微的冷气,老店迎来了第一位客人。
老板寒暄:“今儿个来真早,要点什么?”
“SAR ADC模拟输入架构的输入器件。”
“得嘞,您是要单端输入,伪差分输入还是差分输入呢?”
客人微微皱眉:”这么多类型,可怎么选好?“
老板笑道:“这些输入类型的器件我这儿全都有,这就说说其中的门道。。。“

什么是 SAR ADC

逐次逼近型模数转换器又称SAR ADC,是通用级模数转换器,可产生连续模拟波形的数字离散时间表示。它们通过电荷再分配过程完成这一任务;在此过程中,已知的定量电荷与ADC输入端获取的电荷量相比较。期间针对所有可能的数字代码(量化电平)执行二进制搜索,最终结果收敛至某一代码,使内部集成的比较器返回平衡状态。0和1的组合表示电路产生的决策序列,使系统回到均衡状态。

SAR ADC是通用、易用、完全异步的数据转换器。但是,决定特定应用使用哪种转换器时,仍需做出一些选择。本文具体讨论ADI SAR ADC产品组合提供的模拟输入信号类型。但应注意,尽管本文关注的是SAR ADC,输入类型通用于所有ADC架构。根据所考虑电路的信号源类型或总体目标,需要做出特定设计决策和权衡。最简单的解决方案是匹配ADC输入类型与信号源输出配置。不过,源信号可能需要改变信号类型的调理,或者存在成本、功率或面积考虑因素,影响模拟输入类型决策。我们来了解一下不同的可用模拟输入类型。

单端输入

最简单的模拟输入类型是单端输入。此时,信号从来源到达ADC仅需要一条线路。这种情况下将使用单个输入引脚,无信号源直接返回或感测路径。相对于ADC的接地引脚产生转换结果。根据特定器件,输入可能为单极性或双极性。单端情况下,简单是其优点。信号从来源到达ADC仅需要一条走线。这可以减少系统复杂性,同时降低总信号链的功耗。当然简单也可能有代价。单端设置不会抑制信号链内的直流失调。单端系统需要相对于载流地层执行测量,信号源接地与ADC接地之间的电压差异可能出现在转换结果中。而且,设置更易受耦合噪声影响。因此,信号源和ADC应彼此靠近,以缓解这些效应。

单端单极性

图1. 单端单极性

如果SAR ADC是单极性单端配置,容许信号摆幅介于接地与正满量程之间,通常由ADC基准电压输入设置。单端单极性输入的直观表示可参见图1。采用单端单极性输入的器件有AD7091R和AD7091R-8。

单端双极性

图2. 单端双极性

如果SAR ADC是双极性单端配置,容许信号摆幅介于对地正满量程与负满量程之间。同样,满量程通常由ADC基准电压输入设置。单端双极性输入的直观表示可参见上图。采用单端双极性输入的器件有AD7656A-1。

伪差分输入

如果需要感测信号地或从载流地层解耦相对测量结果,信号链设计人员可能考虑迁移至伪差分输入结构。伪差分器件本质上是带参考地的单端ADC。器件执行差分测量,但检测的差分电压是相对于输入信号接地电平测量的单端输入信号。单端输入被驱动至ADC的正输入端(IN+),输入接地电平被驱动至ADC的负输入端(IN–)。需要注意的是,信号链设计人员必须注意负输入的模拟输入范围。

绝对输入电压示例

图3. 绝对输入电压示例

一些情况中,负输入引脚相对于正输入具有有限的输入范围。这些情况下,正输入可在容许输入电压范围内自由摆动,而ADC的负输入可限制在ADC接地附近的较小±电压范围内。每个ADC输入的容许输入范围可在数据手册中找到。参见“绝对输入电压”规格表。

如果具有有限IN–电压范围的伪差分器件(比如AD7980)需要抑制大于绝对输入电压范围的干扰信号,信号链设计人员可能需要考虑仪表放大器,以在信号到达ADC前消除较大的共模。有三种伪差分配置:单极性、伪双极性及真双极性。ADI SAR ADC产品组合提供采用以上每一种配置的器件。采用单极性伪差分输入的器件有AD7980和AD7988-5。

单极性伪差分

图4. 单极性伪差分

在单极性伪差分设置中,单端单极性信号被驱动至ADC的正输入端,信号源地被驱动至负ADC输入端,如图所示。

在伪双极性设置中,单端单极性信号被驱动至ADC的正输入端。然而,信号源地未被驱动至ADC的负输入端,此输入到达满量程电压的一半。本例中,输入范围为±VFS /2,而非0至VFS 。未出现动态范围增加,单极性情况与伪双极性情况之间的差异是测量正输入所依靠的相对电压。提供伪双极性输入选项的器件有AD7689。

伪双极性

图5. 伪双极性

与单极性伪差分情况相同,伪双极性负输入具有有限的输入范围。不过,此时电压将在VFS/2而非接地左右变化。上图是伪双极性输入范围图。本例中,VOFF = VFS/2。

伪差分真双极性情况与单极性伪差分情况很相似,只不过单端正ADC输入可在低电压上下摆动。通常,峰峰值输入范围是基准电压的两倍或此比例的倍数。提供伪差分真双极性输入的器件有AD7606。

伪差分真双极性

图6. 伪差分真双极性

例如,如果基准电压为5 V,那么伪差分真双极性器件可接受±5 V范围内的输入。图6显示伪差分真双极性输入范围图。

差分输入

伪差分架构优于单端架构之处在于能够抑制转换系统内的特定扰动信号。不过,存在可提供相同抑制优势,同时也增加系统动态范围的架构。

ADI提供两种带有差分输入的器件。本文介绍的第一种是差分反相。本例中,ADC转换ADC正负输入之间的差异,同时正负输入彼此180°反相摆动。通常,差分反相器件为单极性。因此,差分器件的每一侧将在低电压与正满量程(由基准电压输入设置)之间摆动。由于差分器件每一侧180°反相,输入共模固定。与伪差分器件相似,差分反相器件可限制其容许共模输入范围。此范围可在产品数据手册的规格表中找到。如下图7所示。对于ADC输入的绝对输入范围为0伏至正满量程的器件,共模电压为V FS/2。大多数情况下,对于高分辨率(16位及更高)差分反相SAR ADC,共模电压范围为典型共模电压±100 mV。

差分共模输入范围

图7. 差分共模输入范围

差分架构允许用户最大限度地增加ADC的输入范围。与单端或伪差分方案相比,差分信号可将给定电源和基准电压设置的输入范围加倍,提供最多6 dB的动态范围增加,而不增加器件功耗。

需要绝对最佳性能时,通常选择差分反相器件。差分信号将提供最大噪声抑制,趋于消除偶次项失真特性。如图8所示,由于差分器件引脚以相反方向摆动,动态范围和SNR相对于单端和伪差分配置有所改善。

差分信号带来的动态范围增加

图8. 差分信号带来的动态范围增加

如果需要在信号源为单端的信号链中最大限度地提高系统性能,可使用单端至差分放大器,例如ADA4940-1或ADA4941-1,以适当调理输入信号,匹配其与ADC的共模。图9显示了差分反相输入范围图。采用差分反相输入的器件有AD7982、AD7989-5以及AD7915。

差分反相

图9. 差分反相

如同伪差分器件,如果系统内存在较大共模,应使用仪表放大器来调理共模主体。差分ADC可处理共模中的精细变化,且聚合信号链具有极佳的CMRR。

共模范围限制是实现最佳性能和避免影响转换器动态范围所必需的。使用差分反相器件时有一些常见错误,可能违反共模范围。图10显示了实施差分反相器件时常发生的用户错误。违反在图7限制下工作的器件的数据手册。

违反共模

图10. 违反共模

此情形中,差分信号非180°反相。因此,共模在两个ADC输入引脚间剧烈变化。另一个常见的差分反相失误是180°反相、但共模不当的信号,或者将ADC的IN-引脚连接至直流基底电压。在负ADC输入端提供直流电压很快便会违反共模范围规格,同时消除差分信号的动态范围优势。第二种差分信号是测量任意两个信号之间的差分,而不论共模如何。

ADI提供一系列基于SAR ADC技术的集成式数据采集解决方案测量全差分信号。对于寻找具有宽容许输入共模范围的集成式数据采集解决方案的信号链设计人员,ADI提供ADAS3022和ADAS3023。它们分别是双极性连续和同步采样数据采集系统,共模范围宽达±10 V。在此范围内,它们可展示任意两个信号间的差异。

模拟输入类型可影响数字输出编码。具有单极性输入范围的转换器,例如单端单极性和伪差分器件,采用直接二进制编码。代码0将代表负满量程输入电压,代码2N – 1(N为位数)将代表正满量程输入。具有±极性输入的器件将采用二进制补码,以便将符号位提供给用户。具有±极性的器件包括单端双极性、伪差分双极性、伪双极性和全差分器件。对于这些ADC,负满量程输入将由代码–2N – 1代表,正满量程输入将由代码2N – 1 – 1代表。

结论

SAR ADC是创建模数转换信号链的通用、低功耗、高性能选项。这些器件易于实施。不过,为获得系统的所需性能,必须做出特定架构选择。本文具体讨论ADI SAR ADC产品组合提供的模拟输入类型选择。每种输入类型提供特定优势,同时必须做出特定权衡。如上所述,正确的选择对于实现最佳性能至关重要。

点击这里,获取更多电机控制设计信息

围观 17
283

简介

最高 18 位分辨率、10 MSPS 采样速率的逐次逼近型模数转换 器(ADC)可以满足许多数据采集应用的需求,包括便携式、工 业、医疗和通信应用。本文介绍如何初始化逐次逼近型 ADC 以实现有效转换。

逐次逼近型架构

逐次逼近型ADC由4个主要子电路构成:采样保持放大器(SHA)、 模拟比较器、参考数模转换器(DAC)和逐次逼近型寄存器(SAR)。 由于 SAR 控制着转换器的运行,因此,逐次逼近型转换器一般 称为SAR ADC。

基本 SAR ADC 架构

图 1 基本 SAR ADC 架构

在上电和初始化之后,CONVERT 上的一个信号会启动转换。 开关闭合,将模拟输入连接至 SHA,后者获得输入电压。当开 关断开时,比较器将确定模拟输入(此时存储于保持电容)是 大于还是小于 DAC 电压。开始时,最高有效位(MSB)开启, 将 DAC 输出电压设为中间电平。在比较器输出建立之后,如 果 DAC 输出大于模拟输入,逐次逼近寄存器将关闭 MSB;如 果输出小于模拟输入,则会使其保持开启。下一个最高有效位 会重复这一过程,如果比较器确定 DAC 输出大于模拟输入, 则关闭 MSB;如果输出小于模拟输入,则会使其保持开启。 这个二进制搜索过程将持续下去,直到寄存器中的每一位都测 试完毕为止。结果得到的 DAC 输入是采样输入电压的数字近 似值,并由 ADC 在转换结束时输出。

与 SAR转换代码相关的因素

本文将讨论与有效首次转换相关的下列因素:

* 电源顺序(AD765x-1)
* 访问控制(AD7367)
* RESET (AD765x-1/AD7606)
* REFIN/REFOUT (AD765x-1)
* 模拟输入建立时间(AD7606)
* 模拟输入范围(AD7960)
* 省电/待机模式(AD760x)
* 延迟(AD7682/AD7689、AD7766/AD7767)
* 数字接口时序
* 电源序列

些采用多个电源的ADC拥有明确的上电序列。AN-932应用笔记电源序列, 列为这些ADC电源的设计提供了良好的参考。应该特别 注意模拟和参考输入,因为这些一般不得超过模拟电源电压0.3 V 以上。 因此, AGND – 0.3 V

电源斜坡过程中的数据访问

在电源稳定之前不得访问ADC,因为这样可能使其进入未知状 态。在图 2 所示例子中,主机FPGA正在尝试从 AD7367读取数 据,而DVCC正在斜升,结果可能使ADC进入未知状态。

在 DVCC 斜升过程中读取数据

图 2 在 DVCC 斜升过程中读取数据

通过复位实现 SAR ADC初始化

许多SAR ADC(如AD760x 和 AD765x-1在上电后需要通过 RESET来实现初始化。在所有电源都稳定之后,应施加一个指定 的RESET脉冲,以确保ADC以预期状态启动,同时使数字逻辑控 制处于默认状态,并清除转换数据寄存器。上电时,电压开始在REFIN/REFOUT 引脚上建立,ADC进入采集模式,同时配置用户 指定模式。完全上电后,AD760x应看到一个上升沿RESET将其 配置为正常工作模式。RESET高脉冲宽度典型值为50nss。

建立基准电压

ADC 将模拟输入电压转换成指向基准电压的数字代码,因此, 基准电压必须在首次转换前稳定下来。许多 SAR ADC 都有一 个 REFIN/REFOUT 引脚和一个 REF 或 REFCAP 引脚。外部基 准电压可能会通过 REFIN/REFOUT 引脚过驱内部基准电压源, 或者,内部基准电压源可能会直接驱动缓冲。REFCAP 引脚上的电容会使内部缓冲输出去耦,而这正是用于转换的基准电压 源。图 3 所示为 AD765x-1 数据手册中的参考电路示例。

AD765x-1 参考电路

图 3 AD765x-1 参考电路

确保 REF 或 REFCAP 上的电压在首次转换之前已建立。压摆 率和建立时间因不同的储能电容而异,如图 4 所示。

AD7656-1 REFCAPA/B/C 引脚在不同电容下的电压斜坡

图 4 AD7656-1 REFCAPA/B/C 引脚在不同电容下的电压斜坡

另外,设计不佳的参考电路可能导致严重的转换错误。参考电路 问题最常见的表现是"粘连"代码,其原因可能是储能电容的尺 寸和位置、驱动强度不足或者输入存在大量噪声。精密逐次逼近 型ADC的基准电压源设计 计作者:Alan Walsh (模拟对话第47卷第 2期,2013年)详细讨论了SAR ADC的基准电压源设计。

模拟输入建立时间

对于多通道、多路复用应用,驱动器放大器和 ADC 的模拟输 入电路必须使内部电容阵列以 16 位水平(0.00076%)建立满量 程阶跃。不幸的是,放大器数据手册一般将建立精度指定为 0.1%或 0.01%。指定的建立时间可能与 16 位精度的建立时间 显著不同,因此选择驱动器之前应进行验证。

要特别注意多路复用应用中的建立时间。在多路复用器切换 之后,要确保留出足够的时间,以便模拟输入能在转换开始 之前建立至指定的精度。在配合AD7606使用多路复用器时, 应为±10-V输入范围留出至少 80 µs的时间,为±5-V范围留出 至少 88 µs,以便给选定通道足够的时间来建立至 16 位分辨率面向精密SAR模数转换器的前端放大器和RC滤波器设计作者:Alan Walsh(模拟对话 话第 46 卷第 4 期,2012 年)为放 大器的选择提供了更多细节。

模拟输入范围

确保模拟输入处于指定的输入范围之内,要特别注意指定共模 电压的差分输入范围,如图 5 所示。

共模电压下的全差分输入

图 5 共模电压下的全差分输入

For example, the AD796018位、 5 MSPS SAR ADC的差分输入范围为–VREF 至 +VREF, 但折合到地的 VIN+ 和 VIN− −都应该处于–0.1 V至 VREF + 0.1 V的范围内,且共模电压应为 VREF/2左右,如表1所示。

表 1 AD7960的模拟输入规格

使 SAR ADC退出关断或待机模式

为了节能,有些SAR ADC会在空闲时进入关断或待机模式。 在首次转换开始前,要确保ADC退出该低功耗模式。例如, AD7606 系列即提供了两种节能模式:完全关断和待机。这些 模式由GPIO引脚STBY 和RANGE进行控制。

根据图6所示,当STBY 和RANGE返回高电平时,AD7606从完 全关断进入正常工作模式,并配置为±10-V的范围。此时, REGCAPA、REGCAPB和REGCAP引脚上电至数据手册所述的 正确电压。在进入待机模式时,上电时间约为 100 μs,但在外 部基准电压源模式下,这需要大约13 ms。从关断模式上电时, 经过所需的上电时间后,必须施加RESET信号。数据手册将上 电与RESET上升沿之间所需时间规定为 tWAKE-UP SHUTDOWN。

AD7606 初始化时序

图 6 AD7606 初始化时序

带延迟的 SAR ADC

人们普遍认为,SAR ADC 没有延迟,但有些 SAR ADC 确实 存在延迟以便更新配置,因此,在经过延迟时间(可能为数个 转换周期)之前,第一个有效转换代码可能未定义。

例如,AD7985拥有两种转换工作模式:turbo和正常。Turbo模 式(支持最快的转换速率,最高可达2.5 MSPS)不会在转换间 关断。turbo模式下的第一次转换含有无意义的数据,应该予以 忽略。另一方面,在正常模式下,第一次转换是有意义的。

对于AD7682/AD7689, 上电后的前三个转换结果未定义,因为 在第二个EOC之前,不会出现有效的配置。因此,需要两次伪 转换,如图 7 所示。

AD7682/AD7689 的通用时序

图 7 AD7682/AD7689 的通用时序

当在硬件模式下使用 AD765x-1 时,在 BUSY 信号下降沿对 RANGE 引脚的逻辑状态进行采样,以决定下一次同步转换的 模拟输入范围。在有效的 RESET 脉冲之后,AD765x-1 将默认 在±4 × VREF 范围内工作,无延迟问题。然而,如果 AD765x-1 工作于±2 × VREF 范围内,则必须利用伪转换周期在 BUSY的 第一个下降沿选择范围。

另外,有些SAR ADC(如AD7766/AD7767过采样SAR ADC) 有后数字滤波器,结果会导致更多延迟。当将模拟输入多路复 用至这类ADC时,主机必须等到数字滤波器完全建立后才能获 得有效转换结果;经过该建立时间后,方可切换通道。

如表 2 所示,AD7766/AD7767 的延迟为 74 除以输出数据速率 (74/ODR)的商值。在运行于最高输出数据速率 128 kHz 时, AD7766/AD7767 支持 1.729 kHz 的多路复用器开关速率。

表 2 AD7766/AD7767的数字滤波器延迟

数字接口时序

最后,但同样重要的是,主机可以通过一些常见的接口选项(如 并行、并行 BYTE、IIC、SPI 和菊花链模式下的 SPI)来访问 SAR ADC 的转换结果。要得到有效的转换数据,必须确保遵 循数据手册中的数字接口时序规格。

结论

为了获得 SAR ADC 的第一个有效转换代码,务必遵循本文讨 论的建议。可能还需要其他具体配置支持;请查看目标 SAR ADC 数据手册或者应用笔记,了解关于第一个转换周期开始 之前初始化的相关内容。

参考电路

Kester, Walt. Data Converter Support Circuits. Chapter 7, Data Conversion Handbook.

Kester, Walt. “Which ADC Architecture Is Right for Your Application?” Analog Dialogue, Volume 39, Number 2, 2005.

Walsh, Alan. “Front-End Amplifier and RC Filter Design for a Precision SAR Analog-to-Digital Converter.” Analog Dialogue, Volume 46, Number 4, 2012.

作者:Steven Xie

Steven Xie 于2011 年加入ADI 北京分公司,是中国设计中心的一名ADC 应用工程师。他负责中国市场SAR ADC 产品的技术支持工作。在此之前,他曾在Ericsson CDMA 团队做过四年的硬件设计人员。2007 年,Steven毕业于北京航空航天大学,并获得通信与信息系统硕士学位。

围观 8
368

Chau Tran ADI公司

许多应用都需要利用增益模块来放大弱信号或衰减大信号,使之与ADC的满量程输入范围匹配。遗憾的是,采用分立放大器和外部电阻的典型增益模块有很多缺点,例如低精度和漂移限制等。举例来说,采用标准1%、100 ppm/°C增益电阻时,初始增益误差可能达到2%,温漂可能达到200 ppm/°C。一般而言,人们可以使用精密电阻来实现精密增益设置,但这种电阻很昂贵,而且要占用宝贵的PCB空间。另外,每个电阻的温漂情况不同,故增益也可能随着温度而变化。因此,人们需要一种单芯片放大器,它能放大或衰减信号,但性能不会有任何降低。

图1和图2所示IC框图配置是性能更高、成本更低、尺寸更小的解决方案。就此功能而言,这种集成产品是尺寸最小的,电路无需其他外部元件。

连接精密增益模块以提供3和6的电压增益

图1. 连接精密增益模块以提供3和6的电压增益

图1中的IC为AD8273,它是一款低失真、双通道放大器,内部具有增益设置电阻。利用四个已调整电阻,各通道可配置为高性能差动放大器(G = ½或2)、反相放大器(G = –½或–2)或同相放大.器(G= 1½或3)。将两个放大器组合起来,可以构建一个增益可变(¼、½、1、2、3、4和6)的增益模块。该电路可以采用单电源或双电源供电,最大电源电流仅为5 mA。

虽然可以采用分立方式构建此电路,但将电阻集成在芯片上可以给电路板设计人员带来许多好处,如直流规格更佳、交流规格更佳、生产成本更低等。内部电阻经过激光精密调整,保持严格匹配。相比于采用标准分立电阻的放大器设计,这种IC依赖电阻匹配的规格(如增益漂移、共模抑制、增益精度等)更好。这种集成还缩短了电路板构建时间并提高了可靠性。

正负输入引脚故意未接出。把这些节点留在内部意味着其电容要显著低于分立设计中的电容。由于这些节点的电容较低,因此环路更稳定,AC共模抑制性能更好。

该电路支持±2.5 V(5 V单电源)至±18 V(36 V单电源)的宽电源电压范围,非常适合测量工业应用中的大信号。此外,该器件的电阻分压器结构允许其测量超出电源的电压。

连接精密增益模块以提供½和¼的电压增益

图2. 连接精密增益模块以提供½和¼的电压增益。

图2所示的AD8273类似电路配置提供增益为½或¼的衰减。增益模块本身内含两个差动放大器,各放大器的增益为0.5。因此,VOUT1输出电压提供½的精密增益,VOUT2输出电压提供¼的精密增益。

所有电阻都在增益模块内部,故精度和漂移指标均很出色。通常,此类电路的增益精度优于0.1%,增益温度系数低于5 ppm/°C。由于电路集成到一个芯片中,而不是将数个分立器件放在PCB上,所以电路板的制作速度更快且效率更高。

最后,很容易看出,集成放大器且内置增益设置电阻的增益模块相比于分立放大器设计有许多优势。可以连接很多带有片内电阻的IC以提供各种各样的选项。此外,相比于分立设计,使用片内电阻给设计人员带来了多项性能优势,因为运算放大器电路的大多数直流性能取决于周围电阻的精度。内部电阻经过激光调整,并经过测试以确保匹配精度。因此,该IC在增益漂移、共模抑制和增益误差等诸多特性上都达到了很高的要求。其节省空间的封装可减少PCB占用面积。总之,单芯片增益模块可简化布局,降低成本,并自动改善系统能。

作者简介

Chau Tran [chau.tran@analog.com]于1984年加入ADI公司,目前在位于美国马萨诸塞州威明顿市的线性和精密技术部门工作。他于1990年毕业于塔夫斯大学,获得电气工程硕士学位。Chau拥有10多项专利,并撰写了十几篇技术文章。

点击这里,获取更多电机控制设计信息

围观 8
180

作者:Mary McCarthy and Aine McCarthy

有多种类型的温度传感器可以用于温度测量系统。具体使用何种温度传感器,取决于所测量的温度范围和所需的精度。温度测量系统的精度取决于传感器以及传感器所接口的模数转换器(ADC)的性能。许多情况下,来自传感器的信号幅度非常小,因而需要高分辨率ADC。Σ-Δ型ADC属于高分辨率器件,适合这些系统。其片内还嵌入了温度测量系统所需的其它电路,如激励电流和基准电压缓冲器等。本文介绍常用的3线和4线电阻温度检测器(RTD),以及传感器与ADC接口所需的电路,并说明对ADC的性能要求。

RTD

RTD适合测量–200°C至+800°C的温度,在该温度范围内,这些器件的响应接近线性。RTD使用的典型元素有镍、铜和铂,100 Ω和1000 Ω铂制RTD最为常见。RTD有2线、3线或4线形式,其中3线和4线形式最为常用。RTD是无源传感器,需要一个激励电流来产生输出电压。RTD的输出电平从数十毫伏到数百毫伏不等,取决于所选的RTD。

3线RTD接口和构建模块

图1显示了一个3线RTD系统。AD7124-4/AD7124-8包括该系统所需的全部构建模块。为了全面优化该系统,需要2个完美匹配的电流源。这两个电流源用于抵消RTD的RL1和RL2产生的引线电阻误差。一个激励电流流过精密基准电阻RREF和RTD。另一个电流流过引线电阻RL2,所产生的电压与RL1上的压降相抵消。精密基准电阻上产生的电压用作ADC的基准电压REFIN1(±)。由于仅利用一个激励电流来产生基准电压和RTD上的电压,因此,该电流源的精度、失配和失配漂移对ADC整体传递函数的影响极小。AD7124-4/AD7124-8允许用户选择激励电流值,从而调整系统以使用ADC的大部分输入范围,提高性能。

3线RTD温度测量系统

图1. 3线RTD温度测量系统

3线RTD温度测量系统

图2. 3线RTD温度测量系统

RTD的低电平输出电压需要放大,以便利用ADC的大部分输入范围。AD7124-4/AD7124-8的PGA可以设置1到128的增益,允许用户在激励电流值和增益与性能之间进行取舍。出于抗混叠和EMC目的,传感器与ADC之间需要滤波。基准电压缓冲器支持无限的滤波器R、C元件值,这些元件不会影响测量精度。系统还需要校准以消除增益和失调误差。图2显示了此3线B级RTD在执行内部零电平和满量程校准后的实测温度误差,总误差远小于±1°C。

将精密基准电压放在RTD高端的配置非常适合采用单个RTD的系统。需要多个RTD时,精密基准电阻应放在低端,以便所有RTD传感器共用该基准电阻。针对这种方案,激励电流的匹配和匹配漂移性能必须更好。有两种技术可用来降低激励电流源失配引起的误差:

1. 利用AD7124-4/AD7124-8的交叉多路复用器功能、精密基准电阻和ADC的内部低漂移基准电压源,测量这两个电流。

2. 执行系统斩波,这些电流交换到RTD的不同端,将两个结果的平均值用于温度的整体计算。

4线RTD温度测量系统

图3. 4线RTD温度测量系统

4线RTD接口和构建模块

4线RTD测量只需要一个激励电流源。图3显示了一个4线RTD系统。像3线RTD系统一样,所用的基准输入为REFIN1(±),基准电压缓冲器使能,以支持不受限制的抗混叠或EMC滤波。流经RTD的电流也会流过精密基准电阻RREF,其用于产生ADC的基准电压。这种配置导致基准电压与RTD上产生的电压之间呈比例关系。比率式配置确保激励电流值的波动不会影响系统总体精度。图4显示了一个4线B级RTD在执行内部零电平和满量程校准后的实测RTD温度误差。与3线配置类似,记录到的总误差远小于±1°C。

4线RTD温度测量系统

图4. 4线RTD温度测量系统

ADC要求

温度测量系统以低速测量为主(最高速度通常是每秒100次采样)。因此,这种系统需要低带宽ADC,但ADC必须有高分辨率。Σ-Δ型ADC适合此类应用,因为利用Σ-Δ结构能够开发出低带宽、高分辨率ADC。

采用Σ-Δ型转换器时,对模拟输入连续采样,采样频率比目标频段高很多。它还使用噪声整形,将噪声推到目标频段之外,进入转换过程未使用的区域,从而进一步降低目标频段内的噪声。数字滤波器会衰减任何处在目标频段之外的信号。

数字滤波器在采样频率和采样频率的倍数处有镜像,因此,需要一些外部抗混叠滤波器。然而,由于过采样,简单的一阶RC滤波器即足以满足大部分应用的要求。Σ-Δ架构允许24位ADC实现最高达21.7位的峰峰值分辨率(21.7个稳定或无闪烁位)。

滤波(50 Hz/60 Hz抑制)

除了如上所述的抑制噪声以外,数字滤波器还用于提供50 Hz/60 Hz抑制。系统采用主电源供电时,会发生50 Hz或60 Hz干扰。主电源会产生50 Hz及其倍数(欧洲)和60 Hz及其倍数(美国)的噪声。低带宽ADC主要使用sinc滤波器,可将其陷波频率设置在50 Hz和/或60 Hz及其倍数处,从而提供50 Hz/60 Hz及其倍数的抑制。现在越来越多地要求利用建立时间较短的滤波方法提供50 Hz/60 Hz抑制。在多通道系统中,ADC顺次处理所有使能的通道,在每个通道上产生转换结果。选择一个通道后,便需要滤波器建立时间以产生有效转换结果。若缩短建立时间,则可提高给定时间内转换的通道数。AD7124-4/AD7124-8的后置滤波器或FIR滤波器可提供50 Hz/60 Hz同时抑制,并且其建立时间比sinc3或sinc4滤波器要短。图5显示了一个数字滤波器选项,此后置滤波器的建立时间为41.53 ms,并且提供62 dB的50 Hz/60 Hz同时抑制。

其它ADC要求

功耗

系统的功耗取决于最终应用。一些工业应用中,例如工厂中的温度监控,包括传感器、ADC和微控制器在内的整个温度系统都位于一块采用4 mA至20 mA环路供电的独立电路板上。因此,独立电路板的电流预算最大值为4 mA。在便携式设备中,例如用于分析矿山中存在哪些气体的气体分析仪,温度测量必须与气体分析一同进行。这些系统采用电池供电,其设计目标是要使电池的使用寿命最长。这些应用中,低功耗至关重要,同时仍然要求高性能。在过程控制应用中,允许系统消耗更多的电流。对于此类应用,设计要求可能是在一定时间内处理更多的通道,同时仍要达到某一性能水平。AD7124-4/AD7124-8包含三种功耗模式,用户可通过一个寄存器中的2位来选择。所选的功耗模式决定输出数据速率的范围以及片内模拟模块消耗的电流。因此,对于环路供电或电池供电系统,该器件可工作在中功耗或低功耗模式下。在过程控制系统中,该器件可工作在全功率模式下,通过消耗更多的电流来提高性能。

诊断

诊断在工业应用中日益重要。典型的诊断要求包括:

X 电源/基准电压/模拟输入监控
X 开路检测
X 转换/校准检查
X 信号链功能检查
X 读/写监控
X 寄存器内容监控

对于设计用于故障安全应用的系统,片内诊断功能可节省客户的设计时间、外部元件、电路板空间和成本。AD7124-4/AD7124-8等器件便包括上述诊断特性。根据IEC 61508,使用该器件的典型温度应用的失效模式影响和诊断分析(FMEDA)表明安全失效比例(SFF)大于90%。一般需要两个传统ADC才能达到这一水平。

后置滤波器频率响应;25 sps,a) DC至600 Hz,b) 40 Hz至70 Hz

图5. 后置滤波器频率响应;25 sps,a) DC至600 Hz,b) 40 Hz至70 Hz

结论

温度测量系统对ADC和系统的要求非常苛刻。这些传感器产生的模拟信号很弱,必须用增益级予以放大,同时增益级的噪声必须非常低,确保其不会淹没传感器的信号。放大器之后需接一个高分辨率ADC,以将传感器的低电平信号转换为数字信息。采用Σ-Δ架构的ADC适合此类应用,因为利用这种结构能够开发出高分辨率、高精度ADC。除了ADC和增益级之外,温度测量系统还需要其它元件,如激励电流和基准电压缓冲器等。最后,最终应用决定系统可以消耗的电流预算。便携式或环路供电系统必须使用低功耗器件,加上针对故障安全系统的冗余,每个器件的功耗裕量会进一步降低。输入模块等系统需要在更高吞吐速率下达到某一性能水平,导致通道密度增加。使用具有多种功耗模式的器件可以减轻用户的负担,因为一个ADC可以用于多种终端系统,从而缩短设计时间。

作者简介

Mary McCarthy是ADI公司应用工程师。她于1991年加入ADI公司,就职于爱尔兰科克市的线性与精密技术应用部门,专注于精密Σ-Δ型转换器产品。她于1991年从科克大学毕业,获得电子与电气工程学士学位。

Aine McCarthy是ADI公司应用工程师。Aine于2006年加入ADI公司,就职于爱尔兰科克市的线性与精密技术应用部门。Aine拥有科克理工学院电子工程学士学位和科克大学微电子设计硕士学位。

点击这里,获取更多电机控制设计信息

围观 6
233

页面

订阅 RSS - ADC