ADI

还不熟悉ADC?使用包含多路复用器、PGA、缓冲器、Σ-Δ转换器、VREF和电源的复杂系统时,感到很困惑?不知道从哪里开始?

推荐一个“神器”吧——轻松实现改变ADC模拟输入、PGA增益、基准电压源或电源,查看对阶跃响应、幅频特性或转换器直方图的影响。

为什么采用虚拟方式?

一个设计的整体性能是由该设计中单颗芯片的性能所决定的。尽管产品数据手册提供了芯片性能的第一手资料,但评估板通常被用于更好地了解各个电路的完整设计。它们可直接测试转换器、放大器和绝缘体等产品。

尽管如此,评估板有一个严重的缺点。它们需要单独订购,还要连接至测量仪器,并且当测试各种不同评估板以查找最佳配置时,整个过程非常耗时且成本高昂。。。

为避免这种复杂情况,ADI开发了一款在线工具Virtual Eval,可以让设计人员使用仿真功能来评估转换器。此工具无需消耗物料成本,而且还能在设计初选阶段节省大量时间。

Virtual Eval可访问最新最全的ADI转换器数据库。一方面,这可以准确仿真转换器的对应环境,另一方面,它可以在不同场景和边界条件下进行测试。图1中,我们使用 AD7124 模数转换器(ADC)来 解释工具的不同选项和用法。AD7124是一款24位Σ-Δ转换器,并且包含了很多诊断功能,如线缆连接或短路的检测。

Virtual Eval工具显示的AD7124方框图

图1. Virtual Eval工具显示的AD7124方框图

Virtual Eval的第一步就是让用户查看完整的转换器方框图(图1)。直接点击转换器对应的内部模块,就可以设置芯片参数来仿真真实应用场景。例如,被设置的模块可以是输入放大器或者多路选择器。可配置模块还会显示在屏幕左侧的设置中。对于AD7124,其他可配置模块包括SINC4+1 或者 SINC4的滤波器设置、内部时钟和基准电压源。其他一些可以设置的参数包括转换转换速率和时序。

设置好所有参数后,可以直观显示仿真结果并评估转换器的性能。首先,可以显示输入波形(图2a)。此外,还可以计算输入信号的快速傅立叶变换(FFT)。直方图(图2b)可以使用户确定统计数据和转换器精度。

a)输入信号的波形;b)输入信号的直方图

图2. a)输入信号的波形;b)输入信号的直方图

其次,Virtual Eval还可显示信号的频率响应曲线和时域响应功能(图3a)。通常来说,被选择的转换器需要符合奈奎斯特采样定律。借助时域响应功能,可以计算最大输入频率的确切值,包括安全裕度。时域响应功能的上升时间只能通过选择合适的ADC转换率来解决——如果转换率不足,数据就会丢失。

最后,时序图显示AD7124的时间响应(图3b),允许仿真不同场景,如功耗降低或转换率提升。

HB1滤波器响应——DDC实数模式(复数转实数模块使能)

图3. HB1滤波器响应——DDC实数模式(复数转实数模块使能)

Virtual Eval模数转换器仿真工具可简单仿真不同条件和场景下的不同ADC。这种方法不仅经济实惠,还能显著缩短器件选型过程,让你可以挑选合适的转换器,不再需要任何评估板和昂贵的测试。一旦选好转换器,就能在工具的帮助页面中找到转换器的相关设计资料——包含数据手册和详细信息。不久之后,数据库将会扩展到集成模块中,包括例如带集成转换器的AMR传感器。

浏览 1 次
12

作者:Harvey Weinberg(ADI MEMS感测器技术部门应用工程事业群主管)

长久以来偏压稳定度被视为维持陀螺仪稳定度的重要指标,但在大多数的实际应用中,振动敏感度往往也是另个重要关键。因此,为提升陀螺仪稳定性,须同时考量偏压稳定度及振动敏感度。选择陀螺仪时,须要考虑将最大误差源最小化。在大多数应用中,振动敏感度是最大的误差源。

其它参数可以轻松地透过校准或求取多个感测器的平均值来改善。偏压稳定度是误差预算较小的元素。 浏览高性能陀螺仪资料手册时,多数系统设计师关注的第一个要素是偏压稳定度规格。毕竟其描述的是陀螺仪的解析度下限,理所当然是反映陀螺仪性能的最佳指标。然而,实际的陀螺仪会因为多种原因而出现误差,使得使用者无法获得资料手册中宣称的高偏压稳定度。的确,可能只有在实验室内才能获得那么高的性能。传统方法是借助补偿来最大程度地降低这些误差源的影响。

本文将讨论多种此类技术及其局限性。最后,我们将讨论另一种替代范例--根据机械性能选择陀螺仪,以及必要时如何提高其偏压稳定度。 温度补偿克服环境误差 所有中低价位的MEMS陀螺仪都有一定的时间,零点偏置和比例因数误差,此外还会随温度而发生一定的变化。因此,对陀螺仪进行温度补偿是很常见的做法。一般而言,陀螺仪整合温度感测器之目的就在于此。温度感测器的绝对精确度并不重要,重要的是可重复性及温度感测器与陀螺仪实际温度的紧密耦合。

现代陀螺仪的温度感测器几乎毫不费力就能达到这些要求。 许多技术可以用于温度补偿,如多项式曲线拟合、分段线性近似等。只要记录了足够数量的温度点,并且在校准过程中采取充分措施,那么具体使用何种技术是无关紧要的。例如,在每个温度的放置时间不足是一个常见的误差源。然而,不管采用何种技术,无论有多细心,温度迟滞,亦即透过冷却与加热达到某一特定温度时的输出之差,都将是限制因素。

图1所示为陀螺仪ADXRS453的温度迟滞回路。温度从+25℃变为+130℃,再变为-45℃,最后回到+25℃,与此同时记录未补偿陀螺仪的零偏压测量结果。加热周期与冷却周期中的+25℃零偏压输出存在细微的差异(本例中约为0.2o/s),这就是温度迟滞。此误差无法透过补偿来消除,因为无论陀螺仪上电与否,它都会出现。此外,迟滞的强度与所施加的温度「激励」量成比例。也就是说,施加于元件的温度范围越宽,则迟滞越大。

随著温度循环(-45℃~130℃)的未补偿ADXRS453零偏压输出

图1 随著温度循环(-45℃~130℃)的未补偿ADXRS453零偏压输出

假如应用装置允许在启动时进行零偏压重置(即无旋转时启动)或者在现场将零偏压归零,则可以忽略此误差。否则,这可能就会成为偏压稳定度的限制因素,因为我们无法控制运输或是储存的条件。 设置机械式抗振动装置 改善敏感度 理想情况下,陀螺仪仅测量旋转速率,无关其他。但实际应用中,由于机械设计不对称或微加工不够精确,所有陀螺仪都有一定的加速度敏感度。

事实上,加速度敏感度有多种外在表现,其严重程度因设计而异。最显著的通常是对线性加速度的敏感度(或g敏感度)和对振动校正的敏感度(或g2敏感度)。由于多数陀螺仪应用所处的设备是绕地球的1 g重力场运动或在其中旋转,因此对加速度的敏感度常常是最大的误差源。 成本极低的陀螺仪一般采用极其简单紧凑的机械系统设计,抗振性能未经优化(它优化的是成本),因而振动可能会造成严重影响。1000o/h/g(或0.3o/s/g)以上的g敏感度也不足为奇,比高性能陀螺仪差10倍以上。

对于这种陀螺仪,偏压稳定度的好坏并无多大意义,陀螺仪在地球的重力场中稍有旋转,就会因为g和g2敏感度而产生巨大的误差。一般而言,此类陀螺仪不规定振动敏感度被认为非常大。 较高性能的MEMS陀螺仪则好得多。表1列出几款高性能MEMS陀螺仪之规格。对于这一类别中的多数陀螺仪,g敏感度为360o/h/g(或0.1o/s/g),某些低于60o/h/g,远远优于极低成本的陀螺仪。但是,对于小到150mg(相当于8.6o倾斜)的加速度变化,即使其中最好的陀螺仪也会超出其额定偏压稳定度。

有些设计师试图利用外部加速度计来补偿g敏感度(通常是在IMU应用中,因为所需的加速度计已经存在),这在某些情况下确实可以改善性能。然而,由于多种原因,g敏感度补偿无法获得完全的成功。大多数陀螺仪的g敏感度会随著振动频率变化而变化。图2显示了Silicon Sensing CRG20-01陀螺仪对振动的回应。

CRG20-01对不同正弦音频的g敏感度响应

图2 CRG20-01对不同正弦音频的g敏感度响应

值得注意的是,虽然陀螺仪的敏感度在额定规格范围内(在一些特定频率处略有超出,但这些可能不重要),但从DC到100Hz,其变化率为12:1,因此无法简单地透过测量DC时的敏感度来执行校准。确实,要求根据频率改变敏感度的补偿方案将非常复杂。 图3所示为ADXRS646陀螺仪在相似条件下的响应。有些陀螺仪会比其他陀螺仪易于进行g敏感度补偿。但不幸的是这项资讯几乎从来不会出现在资料手册当中,必须由使用者自行去发掘,往往极耗心力,但在系统设计过程中,常常没有时间等待惊喜出现。

ADXRS646对随机振动(15g rms,0.11g2/Hz)的g敏感度响应,1600Hz滤波

图3 ADXRS646对随机振动(15g rms,0.11g2/Hz)的g敏感度响应,1600Hz滤波

另一个困难是将补偿加速度计与陀螺仪的相位响应相匹配。假如陀螺仪的相位响应与补偿加速度计没有良好的匹配,那么高频率振动误差实际上可能会被放大。由此便可得出另一个结论:对于大多数陀螺仪,g敏感度补偿仅在低频时有效。 振动校正常常不作规定,原因可能是差得令人尴尬,或是不同装置差异巨大。也有可能只是因为陀螺仪生产厂商不愿意测试或是设定所导致的(公平的来说,测试可能比较困难)。不论是何者,振动校正必须引起注意,因为它无法以加速度计进行补偿。不同于加速度计响应,陀螺仪的输出误差会被校正。 要改善g2敏感度,最常见的策略就是增加一组机械式抗振动设置,例如图4中所示。图中为从金属帽殼封装中部份移出的Panasonic汽车陀螺仪。此一陀螺仪元件以橡胶抗振动设置与金属帽殼隔离。

典型的抗振动设置

图4 典型的抗振动设置

抗振动设置非常难以设计,因为它在宽频率范围内的响应并不是平坦的(低频时尤其差),而且其减振特性会随著温度和使用时间而变化。与g敏感度一样,陀螺仪的振动校正响应可能会随著频率而不同。虽然可以成功设计出抗振动设置,以衰减得知频谱下的窄频振动,但这一的类抗振设置也不适合应用于宽频振动。 机械滥用引起之主要问题 应用中会发生常规性短期滥用事件,这些滥用虽然不致于损伤陀螺仪,但会产生较大误差。下面列举几个例子。 有些陀螺仪可以承受速率超载而不会表现异常。图5显示Silicon Sensing CRG20陀螺仪对超出额定范围大约70%的速率输入的响应。左边的曲线显示的是旋转速率从0o/s变为500o/s再保持不变时CRS20的响应情况;而右边的曲线则显示输入速率从500o/s降为0o/s时该元件的响应情况。当输入速率超出额定测量范围的时候,输出在轨对轨之间紊乱地摆动。

CRG-20对500o/s速率输入的响应

图5 CRG-20对500o/s速率输入的响应

有些陀螺仪在遭遇哪怕只有数百g的冲击的时后,也会表现出「锁定」倾向。例如,图6显示的是VTI SCR1100-D04在受到250g 0.5ms冲击时的响应情况(让5mm钢球以40cm高度落在陀螺仪旁边的PCB上)。

VTI SCR1100-D04对250g、0.5ms冲击的响应

图6 VTI SCR1100-D04对250g、0.5ms冲击的响应

陀螺仪未因冲击而损坏,但它不再回应速率输入,须要关断再上电以重新启动。这并非罕见的现象,多种陀螺仪都存在类似的行为。这对即将考虑使用的陀螺仪是否能承受应用中的冲击是明智的。 显然,此类误差将大得惊人。因此,必须仔细找出特定应用中可能存在哪些滥用情况,并且验证陀螺仪是否能承受得住。 误差预算之计算 如上所述,多数陀螺仪应用中都存在运动或振动情况。利用上文所示的资料手册所列规格(如果没有规定振动校正特性,则使用保守的估计值),表2列出了表1所示陀螺仪在不同应用中的典型误差预算。从表3可以看出,增加g敏感度补偿方案后,虽然抗振性能提高了半个数量级,但振动敏感度仍然是一个远大于零、偏稳定性的误差来源。

平均值为降低误差新选择 在误差预算中,偏压稳定度是最小的元素之一,因此选择陀螺仪时,更为合理的做法是考虑将最大误差源最小化。在大多数应用中,振动敏感度是最大的误差源。然而,有时用户可能仍然希望获得比所选陀螺仪更低的杂讯或更好的偏压稳定度。幸运的是,目前有办法来解决这一问题,那就是求平均值。 不同于设计相关的环境或者是振动误差,多数陀螺仪的偏压稳定度误差具有杂讯特性。也就是说,不同元件的偏压稳定度是不相关的。因此,可通过求取多个元件的平均值来改善偏压稳定度性能。如果对n个元件求平均值,则期望的改善幅度为√n。宽频杂讯也可以透过类似的求平均值方法予以改善。 长久以来,偏压稳定度被视为陀螺仪规格的绝对标准,但在实际应用中,振动敏感度常常是限制性能的更严重因素。根据抗振能力选择陀螺仪是合理的,因为其他参数可以轻松地透过校正或对多个感测器求平均值来改善。

点击这里,获取更多IOT物联网设计信息

浏览 1 次
9

作者: Frederik Dostal ADI公司

数字电源可用于实现许多很有意思的功能。借助可编程调节环路,可在不同工作条件下获得更佳的环路特性。电源与完整系统的数字连接可实现电压和电流的精确监控。此外,数字电源还提供高灵活性。可以相当快的速度修改不同参数。这简化了电路设计过程并加快了系统衍生产品的开发。

当然,许多电源专家仍然对采用数字电源有一些抗拒。电源设计人员通常不是经验丰富的软件工程师。但在数字电源项目中,通常会在开发团队中增加一名软件工程师。经验表明,由电源专家和软件专家共同开发电源可能会产生一些复杂问题。这两者之间的交流可能导致误解,并最终导致项目延期。

图形用户界面(GUI)是这种困境的一种解决方案。因为GUI可简化数字电源的编程。许多数字控制器IC供应商均提供GUI。通常,GUI的设计方式能够使电源专家直观地使用它们。图1显示了这样的图形用户界面。您可用鼠标选择电源的不同方面,在屏幕上的不同功能框图中进行不同的设置。

许多不同的数字电源仍然具有明显的缺点。图形用户界面通常会生成一个代码,该代码经过编译后,将在微控制器的内核或DSP上运行。设计人员对生成的代码的功能可靠性完全负责。可能会出现一些错误,这些错误需要在验证过程中利用测试矢量找到。对于在图形用户界面中进行的所有小更改,都需要重复此验证过程。

 数字电源图形用户界面

图1. 数字电源图形用户界面

基于状态机的ADP1055框图

图2. 基于状态机的ADP1055框图

还有一种更方便的方式是选择基于状态机的数字电源控制器IC。例如,ADI公司的ADP1055就是这样的器件。图2显示了该电路的框图。数字逻辑系统的作用与状态机相同。电源特性的更改可在图形用户界面中进行设置,如图1所示。这些更改不会为微控制器产生新代码,只会在状态机中设置不同的寄存器状态。正是由于这样的过程,数字电源的功能仍然由数字电源控制器IC的数据手册规定,没有任何软件或代码需要验证。图形用户界面和状态机的组合可简化数字电源领域的首要步骤。此方法深受没有专属软件工程师为电源管理专家提供支持的企业欢迎。而且,此方法在软件代码验证过程极其繁琐的领域也深受欢迎。此类领域的一个例子就是汽车行业。现在,存在许多基于状态机的电源控制器。图2中的ADP1055设计用于不同拓扑结构的直流隔离电源。但是,它还可用于采用交错技术的负载点(POL)应用中。

有关文中任意产品的更多信息,请访问: www.analog.com/cn/DAC

作者简介

Frederik Dostal就读于德国埃尔兰根大学微电子学专业。他于2001年加入电源管理业务部门,曾担任各种应用工程师职位,并在亚利桑那州凤凰城工作了4年,负责开关模式电源。Frederik于2009年加入ADI公司,担任欧洲分公司的电源管理技术专家。联系方式: frederik.dostal@analog.com

点击这里,获取更多电机控制设计信息

围观 4
22

Analog Devices, Inc. (ADI) 今天发布一款14位2.6 GSPS双通道模数转换器AD9689,具备出色的速度和线性度,支持IF/RF采样。AD9689模数转换器每通道功耗为1.55 W,仅为市场上同类解决方案的一半,进一步提高了对很多目标设计情形的支持能力。

除了高性能AD9689之外,ADI还推出了两款相关转换器:双通道14位1300/625 MSPS器件AD9695和单通道14位1300 MSPS器件AD9697。二者均为现有器件的更低功耗、引脚兼容的升级产品。所有三款模数转换器皆包括JESD204B接口,可与FPGA以最高速度高效互连,并且具有同样的寄存器映射,因此只需极少的编码工作,便可跨多个平台使用。由于很多系统架构需要互补信号传输通道,所以ADI公司也提供AD9172和AD9162数模转换器,作为AD9689和AD9695的对应器件。

对于3 GHz模拟输入,AD9689提供出色的64 dB满量程全速无杂散动态范围(SFDR)。该转换器的其他特性包括:用户可编程的FIR滤波器,允许用户执行正交纠错和均衡以优化性能;BGA封装版本提供9 GHz的模拟输入带宽,支持高达及超过第4奈奎斯特区的RF采样。AD9689模数转换器的JESD204B接口支持每通道16 GBPS性能,超过了每通道12.5 GBPS的标准要求。因此,系统FPGA可以使用较少的通道,同时释放资源供其他功能使用。

报价与供货

查看产品页面、下载数据手册、申请样片和订购评估板: http://www.analog.com/pr171013/ad9689
了解用于防务和仪器仪表的ADI公司最高性能模数转换器:
- http://www.analog.com/pr171013/high-speed-converters
- http://www.analog.com/pr171013/aerospace-and-defense-pavilion
- http://www.analog.com/pr171013/instrumentation-and-measurement

通过在线技术支持社区EngineerZone®联系工程师和ADI产品专家:
https://ez.analog.com/community/data_converters/high-speed_adcs

浏览 1 次
13

作者 :Jerad Lewls

简介

在 ADI 公司的众多产品中,MEMS 麦克风 IC 的独特之处在于其输入为声压波。因此,这些器件的数据手册中包括的某些技术规格可能不为大家所熟悉,或者虽然熟悉,但其应用方式却比较陌生。本应用笔记解释 MEMS 麦克风数据手册中出现的技术规格和术语,以便帮助设计人员将麦克风正确集成到系统之中。

灵敏度

麦克风的灵敏度是指其输出端对于给定标准声学输入的电气响应。用于麦克风灵敏度测量的标准参考输入信号为 94 dB 声压级 (SPL) 或 1 帕(Pa,衡量压力的单位)的 1 kHz正弦波。对于固定的声学输入,灵敏度值较高的麦克风的输出水平高于灵敏度值较低的麦克风。麦克风灵敏度(用dB 表示)通常是负值,因此,灵敏度越高,其绝对值越小。务必注意麦克风灵敏度规格的表示单位。如果两个麦克风的灵敏度不是采用同一单位来规定,则直接比较灵敏度值是不恰当的。模拟麦克风的灵敏度通常用 dBV 来规定,即相对于 1.0 V rms 的 dB 数。数字麦克风的灵敏度通常用dBFS 来规定,即相对于满量程数字输出 (FS) 的 dB 数。对于数字麦克风,满量程信号是指麦克风能够输出的最高信号水平 ;对于 ADI 公司 MEMS 麦克风,该水平为 120 dB SPL。有关该信号水平的更完整描述,请参见“最大声学输入”部分。

灵敏度指输入压力与电气输出(电压或数字字)的比值。对于模拟麦克风,灵敏度通常用 mV/Pa 来衡量,其结果可通过下式转换为 dB 值 :

其中OutputREF 为 1 V/Pa (1000 mV/Pa) 参考输出比。对于数字麦克风,灵敏度表示为 94 dB SPL 输入所产生的输出占满量程输出的百分比。数字麦克风的换算公式为 :

其中OutputREF 为满量程数字输出水平 (1.0)。

较高的灵敏度并不总是意味着麦克风的性能更佳。麦克风的灵敏度越高,则它在典型条件(如交谈等)下的输出水平与最大输出水平之间的裕量通常也越小。在近场(近距离谈话)应用中,高灵敏度的麦克风可能更容易引起失真,这种失真常常会降低麦克风的整体动态范围。

方向性

方向性描述麦克风的灵敏度随声源空间位置的改变而变化的模式。ADI 公司的所有 MEMS 麦克风都是全向麦克风,即它们对来自所有方向的声音都同样敏感,与麦克风所处的方位无关。图 1 所示为麦克风响应的 2 轴极坐标图。无论麦克风的收音孔位于 x-y 平面、x-z 平面还是 y-z 平面,此图看起来都相同。

全向麦克风响应图

图 1. 全向麦克风响应图

将全向麦克风集成到手机等较大的机壳中后,系统的方向响应可能不是全向的。对于系统设计人员,与定向响应的麦克风相比,利用全向麦克风能够更灵活地设计系统对声学输入的响应。

多个全向麦克风可以组成阵列来产生各种不同的方向模式,以及用于波束成形应用。

信噪比 (SNR)

信噪比 (SNR) 表示参考信号与麦克风输出的噪声水平的比值。这种测量包括麦克风元件和 MEMS 麦克风封装中集成的 ASIC 二者所贡献的噪声。SNR 为噪声水平与标准 1kHz、94 dB SPL 参考信号的 dB 差。

要计算 SNR,须在安静、消声环境下测量麦克风的噪声输出。该参数通常表示为 20 kHz 带宽内的 A 加权值 (dBA),这意味着它包括一个与人耳对不同频率声音的灵敏度相对应的校正系数。当比较不同麦克风的 SNR 时,必须确保它们采用相同的加权方式和带宽 ;在较窄带宽下测得的 SNR 优于在整个 20 kHz 带宽下测得的 SNR。

动态范围

麦克风的动态范围衡量麦克风能够做出线性响应的最大SPL 与最小 SPL 之差,它不同于 SNR(相比之下,音频ADC 或 DAC 的动态范围与 SNR 通常是等同的)。

麦克风的 SNR 衡量噪底与 94 dB SPL 的参考水平之差,但在该参考水平以上,麦克风仍然有相当大的有用信号响应范围。麦克风能够对 94 dB SPL 至最高 120 dB SPL 的声学输入信号做出线性响应。因此,MEMS 麦克风的动态范围等于其 SNR + 26 dB,其中 26 dB = 120 dB − 94 dB。例如,ADMP404 的 SNR 为 62 dB,而动态范围为 88 dB。

图2显示了声学输入(用dB SPL衡量)与麦克风电压输出(用dBV 衡量)的关系。动态范围和 SNR 显示于这两个刻度轴之间,以供参考。图 2 利用 −38 dBV 灵敏度和 62 dB SNR的 ADMP404 来显示这些关系。

图 3 显示了数字麦克风的 dB SPL 输入与 dBFS 输出之间的类似关系。注意,在此图中,120 dB SPL 的最大声学输入直接映射到 0 dBFS 输出信号。只要最大声学输入对应 0 dBFS 并且设置为 120 dB SPL,则数字麦克风始终具有 −26 dB 的灵敏度。这是由灵敏度的定义(在 94 dB SPL 下测量)所决定的,而不是可以通过改变麦克风 ASIC 的增益进行调整的设计参数。

模拟麦克风的 dB SPL 输入与 dBV 输出的关系

图 2. 模拟麦克风的 dB SPL 输入与 dBV 输出的关系

数字麦克风的 dB SPL 输入与 dBFS 输出的关系

图 3. 数字麦克风的 dB SPL 输入与 dBFS 输出的关系

等效输入噪声 (EIN)

等效输入噪声 (EIN) 是将麦克风的输出噪声水平 (SPL) 表示为一个施加于麦克风输入端的理论外部噪声源。低于EIN 水平的输入(SPL)在麦克风的噪底以下,并且在麦克风能够产生输出的信号动态范围以外。EIN 可以从动态范围或 SNR 参数导出,如下式所示 :

EIN = 最大声学输入 − 动态范围
EIN = 94 dB −SNR

对于一个具有 62 dB SNR 和 120 dB 最大声学输入的麦克风,其 EIN 为 32 dB SPL,这大约是在安静的图书馆中 5 米开外的轻声低语所产生的 SPL。图 2 和图 3 显示了麦克风的EIN。

频率响应

麦克风的频率响应描述其在整个频谱上的输出水平。频率上限和下限用麦克风响应比 1 kHz 的参考输出水平低 3 dB时的频率点来描述。1 kHz 的参考水平通常归一化为 0 dB。在这些条件下,ADI 公司的 MEMS 麦克风通常具有统一的100 Hz 至 15 kHz 频率响应。

频率响应特性还包括通带内偏离平坦响应的限值。这些值表示为 ±x dB,说明 -3 dB 点之间输出信号与标称 0 dB 电平的最大偏差。

对于 ADI 公司的 MEMS 麦克风,低频 −3 dB 点以下的低频滚降为一阶(6 dB/8 倍频程或 20 dB/10 倍频程),高频−3 dB 点以上的高频滚降为二阶(−12 dB/8 倍频程或 −40 dB/10 倍频程)。

MEMS 麦克风数据手册用两幅图来显示此频率响应 :一幅图显示频率响应模板,另一个幅图显示典型实测频率响应。频率响应模板图显示整个频率范围内麦克风输出的上限和下限,麦克风输出保证位于此模板范围内。典型频率响应图显示麦克风在整个频段内的实际响应。图 4 和图 5 的示例为选自 ADMP404 数据手册的两幅图。

频率响应较宽且平坦的麦克风有助于系统设计实现自然、清晰的声音。

频率响应模板

图 4. 频率响应模板

典型频率响应(实测)

图 5. 典型频率响应(实测)

总谐波失真 (THD)

总谐波失真 (THD) 衡量在给定纯单音输入信号下输出信号的失真水平,用百分比表示。此百分比为基频以上所有谐波频率的功率之和与基频信号音功率的比值。

THD 值越高,说明麦克风输出中存在的谐波水平越高。MEMS 麦克风的 THD 利用基波的前五次谐波计算。

此测试的输入信号通常为 105 dB SPL,比 94 dB SPL 参考高11 dB。与其它参数相比,THD 在较高的输入 SPL 下测量,这是因为随着声学输入信号水平提高,THD 测量结果通常也会提高。根据经验,输入水平每提高 10 dB,THD 会提高 3 倍。因此,如果在 105 dB SPL 时 THD 小于 3%,则在95 dB SPL 时 THD 将小于 1%。

切勿将此参数与总谐波失真加噪声 (THD + N) 混为一谈,后者不仅衡量谐波水平,而且包括输出中的所有其它噪声贡献。

电源抑制比 (PSRR)

麦克风的电源抑制比 (PSRR) 衡量其抑制电源引脚上的噪声,使之不影响信号输出的能力。PSRR 通过将一个 217Hz、100 mV 峰峰值正弦波施加于麦克风的 VDD 引脚来测量。PSRR 测量将给出从麦克风的输出来看,此输入信号衰减了多少 dB。此参数之所以使用 217 Hz 频率,是因为在 GSM电话应用中,217 Hz 开关频率通常是电源的一个主要噪声源。

MEMS 麦克风的数据手册也会显示 100 Hz 至 10 kHz 频率范围内的 PSRR。这些麦克风具有出色的低频噪声抑制性能(模拟麦克风小于 −70 dBV,数字麦克风小于 −80 dBFS)。如图 6(选自 ADMP404 数据手册)所示,PSRR 在高频时提高到略低于 −50 dB 的水平。

典型电源抑制比与频率的关系

图 6. 典型电源抑制比与频率的关系

最大声学输入

最大声学输入指的是麦克风能够承受的最高声压级 (SPL)。高于此参数的 SPL 会导致输出信号发生严重的非线性失真。最大声学输入用峰值 SPL 来规定,而不是均方根值。ADI 公司 MEMS 麦克风的最大声学输入为 120 dB,相当于空气中的 20 Pa 声压级。

点击这里,获取更多IOT物联网设计信息

围观 9
18

页面

订阅 RSS - ADI