ADI

作为应用工程师,我们经常遇到各种有关差分输入型高速模数转换器(ADC)的驱动问题。事实上,选择正确的ADC驱动器和配置极具挑 战性。为了使鲁棒性ADC电路设计多少容易些,我们汇编了一套通用"路障"及解决方案。本文假设实际驱动ADC的电路—也被称为ADC 驱动器或差分放大器 — 能够处理高速信号。

引言

大多数现代高性能ADC使用差分输入抑制共模噪声和干扰。由于采用了平衡的信号处理方式,这种方法能将动态范围提高2倍,进而改善系统总体性能。虽然差分 输入型 ADC也能接受单端输入信号,但只有在输入差分信号时才能获得最佳ADC性能。ADC驱动器专门设计用于提供这种差分信号的电路—可以完成许多重要的功能,包括 幅度调整、单端到差分转换、缓冲、共模偏置调整和滤波等。自从推出 AD8138,1 以后,差分ADC驱动器已经成为数据采集系统中不可或缺的信号调理元件。

差分放大器

图1:差分放大器

图1是一种基本的完全差分电压反馈型ADC驱动器。这个图与传统运放的反馈电路有两点区别:差分ADC驱动器有一个额外的输出端(VON)和一个额外的输入端(VOCM) 。当驱动器 与差 分 输入型ADC连接时,这些输入输出端可以提供很大的灵活性。

与单 端 输出相反,差 分ADC驱动器产生平衡的差分输出信号—相对于VOCM—在VOP与VON 之间。这里的P指的是正,N指的是负。VOCM输入信号控制输出共模电压。只要输入与输出信号处于规定范围内,输 出共模电压必定等于VOCM输入端的电压。负反馈和高开环增益致使放大器输入端的电压VA+和VA- 实质上相等。

为了便于后面的讨论,需要明确一些定义。如果输入信号是平衡信号,那么VIP和VIN 相对于某个公共参考电压的幅度应该是相等的,相位则相反。当输入信号是单端信号时,一个输入端是固定电压,另一 个输入端的电压相对这个输入端变化。无论是哪种情况,输入信号都被定义为 VIP – VIN。

差模输入电压VIN, dm和共模输入电压VIN, cm的定义见公式1和公式2。

虽然这个共模电压的定义应用于平衡输入时很直观,但对单端输入同样有效。

输出也有差模和共模两种,其定义见公式3和公式4。

需要注意实际的输出共模电压VOUT, cm和VOCM输入端之间的差异,这个差异决定了输出共模电平。

对差分ADC驱动器的分析比对传统运放的分析要复杂得多。为了简化代数表达式,暂且定义两个反馈系数β1和β2,见公式5和公式6。

在大多数ADC驱动应用中 β1 = β2, 但含有 VIP, VIN, VOCM, 1和2项的 VOUT, dm通用闭环公式对于了解β失配对性能的影响非常有用。VOUT, dm 的计算见公式7,其中包括了与频率相关的放大器有限开环电压增益A(s)。

当 β1 ≠ β2, 差分输出电压取决于VOCM—这不是理想的结果,因为 它产生了偏移,并且在差分输出中有过大的噪声。电压反馈架构的增益带宽积是常数。有趣的是,增益带宽积中的增益是两个反馈系数平均值的倒数。

当 β1 = β2 ≡ | β, 公式7可以被简化为公式8。

这个表达式大家可能更加熟悉。 当 A(s) → ∞. 理想的闭环增益可以简化为RF/RG 增益带宽乘积公式看起来也很熟悉,其中的"噪声增 益 "与传统运放一样,等于1/β。

反馈系数匹配的差分ADC驱动器的理想闭环增益见公式9。

输出平衡是差分ADC驱动器的一个重要性能指标,它分两个方面:幅度平衡和相位平衡。幅度平衡用于衡量两个输出在幅度方面的接近 程度,对于理想放大器来说它们是完全一致的。输出相位平衡用于衡量两个输出的相位差与180°的接近程度。输出幅度或相位的任何 失衡都会在输出信号中产生有害的共模分量。输出平衡误差(公式10)是差分输入信号产生的输出共模电压与相同输入信号产生的输 出差模电压的对数比值,单位是dB。

内部共模反馈环路迫使VO U T, cm等于输入端VOCM的电压,从而达到完美的输出平衡。

将输入端接到ADC驱动器

处理高速信号的系统经常会用到ADC驱动器。分隔距离超 过信号波长一小段的器件之间必须用具有受控阻抗的电气传输线连接,以避免 破坏信号完整性。当传输线的两端用其特征阻抗端接时可以取得最佳性能。驱动器一般放在靠近ADC的地方,因此在它们之间不要求使 用受控阻抗连接。但到ADC驱动器输入端的引入信号连接通常很长,必须采用正确电阻端接的受控阻抗连接。

不管是差分还是单端,ADC驱动器的输入阻抗必须大于或等于理想的终端电阻值,以便添加的终端电阻RT能与放大器输入端并联达到 要求的电阻值。本文讨论的例子中的所有ADC驱动器都设计成具有平衡的反馈比,如图2所示。

图2:差分放大器的输入阻抗

因为两个放大器输入端之间的电压被负反馈驱动到零,因此两个输入端处于连接状态,差分输入阻抗RIN就简单地等于2×RG。为了匹配传输线阻抗 RL,需要将由公式11计算得到的电阻RT跨接在差分输入端。图3给出了典型的电阻值,其中 RF = RG = 200 Ω, 理想的 RL, dm = 100 Ω, and RT = 133 Ω.

图3:匹 配100Ω传输线。

单端输入的端接更加麻烦。图4描述了采用单端输入和差分输出的ADC驱动器工作原理。

图4:采用单端输入的ADC驱动器例子。

虽然输入是单端的,但 VIN, dm 等于 VIN. 因为电阻RF和RG 是相等和平衡的,因此增益是1,而且差分输出 VOP – VON, 等于输入,即 4 V p-p. VOUT, cm = VOCM = 2.5 V ,而且从下方的反馈电路可以看出,输入电压 VA+ 和 VA– 等于 VOP/2.

根据公式3和公式4, VOP = VOCM + VIN/2, 即2.5V±1V的同相摆幅; VON = VOCM – VIN/2, 即2.5V±1V的反相摆幅。这样,VA+ 和 VA– 的摆幅等于 1.25V±0.5V。 The 必须由 VIN 提供的电流交流分量等于 (2 V – 0.5 V)/500 Ω = 3 mA, 因此到地的电阻必须匹配,从 VIN, 看过去为 667 Ω.

当每个环路的反馈系数都匹配时,公式12 就是计算这个单端输入电阻的通式,其中RIN, se是单端输入电阻。

这是计算终结电阻的出发点。然而值得注意的是,放大器增益公式基于零阻抗输入源的假设。由于存在单端输入造成的不平衡而必须 加以匹配的重要源阻抗只会增加上面RG的阻值。为了保持平衡,必须增加下面RG的阻值来实现匹配,但这会影响增益值。

虽然可以为解决端接单端信号问题而采用一个封闭形式的解决方案,但一般使用迭代的方法。在下面的例子中这种需求将变得很明显。

在图5中,为了保持低的噪声,要求单端到差分增益为1,输入终结电阻为50Ω,反馈和增益电阻值在200Ω 左右。

根据公式12可以算出单端输入电阻为267Ω。公式13表明,并联电阻RT应等于61.5Ω,才能将267Ω输入电阻减小至50 Ω.

单端输入阻抗

图5:单端输入阻抗

图6是带源电阻和终端电阻的电路。带50Ω源电阻的源开路电压为2Vp-p。当源用50Ω端接时,输入电压减小到1V p-p,这个电压也是单位增益驱动器的差分输出电压。

图6:带源电阻和终端电阻的单端电路。

这个电路初看起来非常完整,但不匹配的61.5Ω电阻与50Ω的并联并增加到了上面的RG电阻,这就改变了增益和单端输入电阻,并且造成 反馈系数失配。在低增益情况下,输入电阻的变化很小,暂时可以忽略,但反馈系数仍然必须匹配。解决这个问题的最简单方法是增加下面 RG的阻值。图7是一种Thévenin等效电路,其中上方的并联组合用作源电阻

图7:输入源的Thévenin等效电路

有了这种替代方案后,就可以将2 7. 6Ω的电阻RTS 增加到下面的环路中实现环路反馈系数的匹配,如图8所示。

图8:平衡的单端端接电路

注意,1.1V p -p的Thévenin电压要大于1V p-p的正确端接电压,而每个增益电阻增加了2 7. 6Ω,降低了闭环增益。对于大电阻(>1kΩ) 和低 增 益(1或2)来说这些相反的效应基本抵消,但对于小电阻或较高增益来说并不能完全抵消。

图8所示电路现在分析起来就很容易了,其中的差分输出电压可以用公式14计算。

差分输出电压并不完全等于理想的1Vp-p,但可以通过修改反馈电阻实现最终独立的增益调整,如公式15所示.

图9是用标准1%精度电阻实现的完整电路。

图9:完整的单端端接电路。

观察: 参考图9,驱动器的单端输入电阻RI N, s e由于RF和RG的改变而变化。驱动器上端环路的增益电阻是200Ω ,下端环路的电阻是 200 Ω + 28 Ω = 228 Ω 。在不同增益电阻值的情况下计算RI N, s e首先要求计算两个β值,见公式16和公式17。

输入电阻 RIN, se的计算见公式18。

这个值与原来计算的267Ω稍有不同,但对RT的计算没有显著的影响,因为R IN, se与RT 是并联的关系。

如果需要更精确的总体增益,可以使用更高精度或串联的可调电阻。

述的单次迭代方法非常适合闭环增益为1或2的场合。增益越高,RTS的值越接近RG值,用公式18计算的RIN, se 值与用公式12计算的RIN, se值之间的差异就越大。在这些情况下要求采用多次迭代。

多次迭代并不难实现:最近ADI公司发布的可下载的差分放大器计算工具, ADIsimDiffAmp™ (参考文献2)和 ADI Diff Amp Calculator™(参 考文献3)足以担当此任,它们能在几秒内完成上述计算。

输入共模电压范围

输入共模电压范围(ICMVR)规定了正常工作状态下可以施加于差分放大器输入端的电压范围。在这些输入端上呈现的电压可以被称为ICMV、 Vacm或VA±。这个ICMVR指标经常被误解。最常遇到的难题是确 定差分放大器输入端的实际电压,特别是相对于输入电压而言。知道变量VIN, cm、 β和VOCM的值后,当β不相等时使用通式19、当β相等时使用简化公式20就可以计算出放大器的输入电压(VA±)。

记住VA始终是按比例缩小的输入信号,这一点非常有用(见图4)。不同的放大器类型有不同的输入共模电压范围。 ADI公司的高速差分ADC驱动器有两种输入级配置,即中心型和偏移型。中心型ADC驱动器的输入电压离每个电压轨有约1V的距离(因此叫中心型)。而偏移 型输入级增加了两个晶体管,允许输入端电压摆幅更接近–VS轨。图10是一个典型差分放大器(Q2和Q3)的简化输入原理图。

图10:具有偏移型ICMVR的简化差分放大器。

偏移型输入架构允许差分放大器处理双极性输入信号,即使放大器是采用单电源供电,因此这种架构非常适合输入是地或地电平以下的单电源应用。在输入端增加的 PNP晶体管(Q1和Q4)可以将差分对的输入电压向上偏移一个晶体管的Vbe电压 。例如,当-IN端电压为-0.3V时,A点电压将为0.7V,允许差分对正常工作。没有 PNP(中心型输入级)时,A点的-0.3V电压将使NPN差分对处于反向偏置状态,因而无法正常工作。

表1提供了ADI公司ADC驱动器的多数指标一览表。对这张表粗略一看就能发现哪些驱动器具有偏移型ICMVR,哪些没有。

表1:高速ADC驱动器的指标。

未完待续!

点击这里,获取更多电机控制设计信息

围观 5
54

"中国物联网产业的发展,将在未来五年保持稳定而高速的增长。政府政策的支持和物联网标准的完善,新型智慧城市建设和公共事业建设的需求,企业转型升级推动产业物联网应用的发展,都成为支撑中国物联网市场稳定增长的主要动力。放眼未来,在平安城市、智慧交通、节能环保、零售等众多细分领域,物联网带来的产业集群效应将愈加显现,物联网的市场前景将远超当前概念下的IT(信息技术)和CT(通信技术)市场。如何开放协作,构建合作共赢的物联网生态圈,将是物联网产业加速发展的关键因素。

IDC最新发布了《2017年下半年全球半年度支出指南》,预测到2021年,中国物联网支出将达到2912.2亿美元(约1.93万亿元人民币)。届时中国物联网支出在全球支出中的占比将达到25.6%,中国物联网市场支出将在未来5年保持11.9%的年均增长率。

政策体系不断完善,推动物联网规范化、规模化

自物联网被写入政府工作报告伊始,中国物联网产业的发展就纳入了国家发展战略之中,物联网产业相关的技术和应用,也在各级政府的政策支持下获得了更加快速的发展。

回顾2017年,工信部年初发布了《物联网"十三五"规划》,《规划》明确了物联网产业"十三五"的发展目标。在技术领域,5G频谱规划已经完成,毫米波技术试验正在开展。三大运营商除了跟随国家的提速降费指导政策外,也提供了物联网专项补贴,以促进NB-IoT(Narrow Band Internet of Things,窄带物联网)技术的规模应用。未来,随着NB-IoT技术、eMTC(enhanced Machine Type Communication,增强机器类通信)、以及5G技术的稳步发展和逐渐成熟,物联网终端和平台将会保持稳定而高速的增长。物联网相关标准的研制,也从通用标准转向了行业标准和产业标准。6月,《中华人民共和国网络安全法》正式施行,《网络安全法》覆盖了包括物联网、信息基础设施的安全、云计算、大数据在内的新兴技术,网络安全意识的提高正在推动安全领域的支出增长,基于物联网平台和物联网端到端的安全解决方案将会是下一个市场热点。

物联网相关政策与产业的发展相辅相成,随着物联网技术的成熟、应用场景的丰富,中国物联网政策与标准,将会有体系的从顶层向下延伸,从而更好的服务于物联网产业在不同地区、不同行业的规范化、规模化发展。

新型智慧城市建设,加速物联网应用的部署与迭代

"新型智慧城市"建设提出迄今已近两年,其发展与新兴技术的发展和治理模式的革新息息相关。云计算和大数据的发展,为智慧政务云平台和数字城市提供了技术支撑,政府治理革新推动着城市建设和运营模式的变革。回顾过去数年,PPP(Public-Private-Partnership,政公共私营合作)模式加速了中国政务云市场的发展,IDC的数据(《IDC MarketScape:中国政务云市场厂商评估,2017》)显示,以省市级政务云平台统计,超过65%的省市已经建有政务云平台。以成熟的智慧城市云平台为基础,以城市政府开放和革新理念为动力,更多的商业模式,例如BOT(Build-Operate-Transfer,建设-经营-转让)、EMC(Energy Management Contract,合同能源管理)、政府购买公共服务等,将共同促进智慧城市场景下的物联网市场发展,在智慧交通、智能基础设施管理、环保节能等领域,物联网将得到更广泛的应用。

通信基础设施稳步推进,支撑物联网产业的技术融合与应用创新

连接是物联网发展的基础,通信基础设施的完善,以及通信资费的降低,为物联网市场的快速发展,以及物联网应用的创新,提供了重要支撑。2017年,三家基础通信运营商全部规模商用了NB-IoT网络,NB-IoT基站的建设数量也远远大于工信部在《推进物联网(NB-IoT)建设发展的通知》中要求的40万个。NB-IoT网络的连续覆盖,大大加速了中国智慧城市、智能交通、智能农业等领域的物联网应用,再次证明了物联网应用的巨大现实意义和商业价值。随着eMTC、LoRa、4G+等技术的不断成熟,未来将有更多的通信服务类型,来满足物联网场景化应用的需求。

IDC中国电信和物联网研究部研究经理崔凯表示,"而随着物联网应用的丰富,更多的连接技术,将为不同的物联网应用场景提供不同级别的连接服务。随着5G脚步越来越近,未来物联网的发展将进入快车道。而在5G到来之前,如何利用和丰富现有的通信技术,构建新型物联网生态,探索创新商用模式,寻找"杀手级"应用,将是目前物联网市场发展的关键所在。"

数字产业接棒信息产业,物联网助力跨行业应用取得突破

先有国务院印发的"中国制造2025",后有阿里巴巴提出的"新零售"、"新物流"。过去两年IT领域的概念履有革新。从新兴技术的角度来看,是以数据为基础的个性化营销、以数据驱动的柔性化生产、基于数据的社会化物流……而物联网应用,正在改变着这些行业的传统运营模式。在物流领域,供应链物流和快递行业的物联网应用正在普及;在线下店面,数字化营销和智能零售店的解决方案正崭露头角;智能工厂正在从订单生产向着客户需求转型。伴随着应用场景的普及,企业将在整合企业数据、解决企业问题方面投入更多的资源,挖掘数据的更多价值。

点击这里,获取更多IOT物联网设计信息

浏览 1 次
36

作者:Mike Delaus和Santosh Kudtarkar(ADI公司)

在医疗设备设计领域,一个重要趋势是提高这些设备的便携性,使其走近病人,进入诊所或病
人家中。这涉及到设计的方方面面,尤其是尺寸和功耗。晶圆级芯片级封装(WLCSP)的运用对减小这些设备电子组件的尺寸起到了极大的助推作用。

此类新型应用包括介入性检测、医学植入体和一次性便携式监护仪。但是为了最大限度地发挥出WLCSP封装在性能和可靠性方面的潜力,设计师必须在印刷电路板(PCB)焊盘图形、焊盘表面和电路板厚度的设计方面贯彻最佳实践做法。

WLCSP封装

图1. WLCSP封装

晶圆级芯片级封装是倒装芯片互联技术的一个变体(图1)。在WLCSP中,芯片活性面采用反转式设计,通过焊球连接至PCB。一般地,这些焊球的尺寸足够大(0.5 mm间距,回流前为300 µm,0.4 mm间距,回流前为250 um),无需倒装互联技术所需要的底部填充。该互联技术有多个优势。

首先,由于消除了第一级封装(塑封材料、引脚架构或有机基板),因而可以节省大幅空间。例如,一个8引脚WLCSP所占电路板面积仅相当于一个8引脚SOIC的8%。其次,由于消除了标准塑封中使用的线焊和引脚,因而可以减小电感,提高电气性能。

另外,由于消除了引脚架构和塑封材料,因而可以减轻重量,降低封装厚度。无需底部填充,因为可以使用标准表贴(SMT)组装设备。最后,低质芯片在焊锡固化期间具有自动对齐特性,有利于提高装配成品率。

封装结构

WLCSP在结构上可分为两类:直接凸点和再分配层(RDL)。直接凸点WLCSP包括一个可选的有机层(聚酰亚胺),充当芯片活性面的应力缓冲层。聚酰亚胺覆盖着芯片上除焊盘周围开口之外的所有区域。该开口上喷涂有或镀有一层凸点下金属(UBM)。UBM由不同的金属层叠加而成,充当扩散层、阻挡层、浸润层和抗氧化层。将焊球滴落(这是其称为落球的原因)在UBM上,并经回流形成焊接凸点(图2)。

直接凸点WLCSP

图2. 直接凸点WLCSP

再分配层(RDL) WLCSP

图3. 再分配层(RDL) WLCSP

运用RDL技术,可以把针对线焊设计的芯片(焊盘沿外围排列)转换成WLCSP。与直接凸点不同,这类WLCSP采用了两个聚酰亚胺层。第一个聚酰亚胺层沉淀在芯片上,使焊盘保持开放。然后喷涂或镀上一层RDL,把外围阵列转换成面积阵列。然后,构造工艺与直接凸点相同,包括第二层聚酰亚胺、UBM和落球(图3)。落球后则是晶圆背面研磨、激光打标、测试、分离及卷带和卷盘。在背面研磨工序之后,还可选择施用背面层压板,以减少切割时造成的芯片脱离问题,简化封装处理工作。

最佳PCB设计实践电路板设计的关键参数为焊盘开口、焊盘类型、焊盘表面和电路板厚度。基于IPC标准,焊盘开口等于UBM开口。对于0.5 mm间距WLCSP,典型焊盘开口为250 µm,0.4 mm间距WLCSP为200 µm(图4)。

焊盘开口

图4. 焊盘开口

阻焊层开口为100 µm与焊盘开口之和。走线宽度应小于焊盘开口的三分之二。增加走线宽度可以减少焊接凸点的支柱高度。因此,维持正确的走线宽度比对于确保焊点可靠性也很重要。对于电路板制造来说,表贴装配使用两类焊盘图形(图5):

• 非阻焊层限定(NSMD):PCB上的金属焊盘(I/O装在其上)小于阻焊层开口。
• 阻焊层限定(SMD): 阻焊层开口小于金属焊盘

焊盘类型

图5. 焊盘类型

由于铜蚀刻工艺比阻焊开口工艺有着更加严格的控制,因此NSMD比SMD更常用。NSMD焊盘上的阻焊开口比铜焊盘大,使焊锡可以依附于铜焊盘四周,从而提高焊点的可靠性。

金属焊盘上的表层对装配成品率和可靠性都有着深刻的影响。采用的典型金属焊盘表面处理工艺为有机表面防腐(OSP)和无电镀镍浸金(ENIG)两种。金属焊盘上OSP表层的厚度为0.2 µm至0.5 µm。该表层会在回流焊工序中蒸发,焊料与金属焊盘之间会发生界面反应。

ENIG表层由5 µm的无电镀镍和0.02 µm至0.05 µm的金构成。在回流焊过程中,金层快速溶解,然后,镍和焊料之间会发生反应。非常重要的是,要使金层的厚度保持在0.05 µm以下,以防形成脆性金属间化合物。标准的电路板厚度范围在0.4 mm至2.3 mm之间。选择的厚度取决于已填充系统组件的鲁棒性。较薄的电路板会导致焊接接头在热负载条件下的剪切应力范围、爬电剪切应变范围和爬电应变能量密度范围变小。因此,较薄的积层电路板会延长焊接接头的热疲劳寿命。

测试和评估

结合前述变量,WLCSP的可靠性通过对器件进行加速压力测试来评估,此类测试包括高温存储(HTS)、高加速压力测试(HAST)、高压锅测试、温度循环、高温工作寿命测试(HTOL)和无偏高加速压力测试(UHAST)。除了热机械诱导性压力测试以外,还要进行坠落、弯曲等机械测试。

HTS测试旨在确定在不施加任何电应力的情况下,高温条件下长期存储对器件的影响。该测试评估器件在高温条件下的长期可靠性。典型测试条件为在150°C和/或175°C下持续1000小时。实施测试时要把器件暴露在指定环境温度之下,并持续指定的时长。

点击这里,获取更多IOT物联网设计信息

围观 2
47

目前已到2017年年底,大家都在分析2018年中国新能源汽车技术发展趋势。而科技部《新能源汽车2018年重点专项申报指南》已经发布,对企业而言很有指导意义。下面是笔者学习《申报指南》后,对2018年度电机驱动与电力关键技术发展趋势的分析,分享如下:

一、中国新能源汽车重大共性关键技术的主攻方向

《申报指南》列出2018年中国新能源汽车技术的主攻方向包括:动力电池与电池管理系统,电机驱动与电力,电子、电动汽车智能化,燃料电池动力系统,插电/增程式混合动力系统,纯电动力系统。一共是6个方向,再细分24个研究任务。

二、2018年度电机驱动与电力关键技术研究任务

1、商用车高可靠性车载电力电子集成系统开发

研究内容:

研究基于功率器件级集成的多变流器拓扑结构和绝缘栅双极型晶体管(ⅠGBT)芯片集成封装技术;研究机-电-热集成设计技术及电磁兼容技术;研究硬件安全冗余、软件容错等系统功能安全技术;研究集成电力电子控制器产品(简称PCU)的可靠性及测试方法。开发出适用于10~12米纯电动、插电式、增程式客车的PCU产品。

考核指标:

商用车电力电子集成控制器产品比功率≥10.0kVA/kg;控制器最高效率≥98%,效率大于90%的高效区≥80%,集成控制器电磁兼容性能(EMC)(带载)、可靠性和产品设计寿命满足整车要求,PCU产品寿命≥8年(以关键器件寿命设计文件与加速寿命验证测试报告作为验收依据);配套整车产品完成公告,并批量装车。

2、轿车高可靠性车载电力电子集成系统开发

研究内容:

研究基于功率器件级集成的多变流器拓扑结构,开发机-电-热集成设计技术及电磁兼容技术;研发芯片集成封装技术及硬件安全冗余、软件容错等系统功能安全技术;研究集成电力电子控制器产品(简称PCU)的可靠性、寿命设计及测试方法。开发出适用于A级、B级插电式/增程式混合动力乘用车的PCU产品。

考核指标:

PCU产品设计安全等级达到或超过ⅠSO26262ASⅠL-C等级;PCU产品设计寿命不少于10年(以关键器件寿命设计文件与加速寿命验证测试报告作为验收依据);功率密度≥15.0kVA/L(对于插电式、增程式混合动力车型按驱动电机控制器和发电机控制器峰值功率之和计算);控制器最高效率≥98%,效率大于90%的高效区≥80%,集成控制器EMC(带载)、可靠性和产品设计寿命满足整车要求,配套整车产品完成公告,并批量装车。

3、基于碳化硅技术的车用电机驱动系统技术开发

研究内容:

攻克低感高密度碳化硅模块封装、高温高频电容器设计与封装技术难关;研究碳化硅变流器高功率密度,高频化永磁电机设计与工艺,电机驱动系统高效控制技术,噪声、振动、平顺性(NVH)和EMC等技术;研究碳化硅控制器与驱动电机一体化集成技术;研究碳化硅电机驱动系统的全寿命周期成本评价方法;开发出车用大电流碳化硅模块、车用高温高频大电流电容、全碳化硅电机控制器以及整个电机驱动系统。

考核指标:

电力电子模块电流≥400A,电压≥750V;电容器容积比≥1.4uF/mL;碳化硅电机控制器功率密度≥30kW/L,最高效率≥98.5%,超过90%的高效区≥90%;电机峰值功率密度≥4.0kW/kg(30秒),连续比功率≥2.5kW/kg;电机最高效率≥96.5%,电机及其控制系统最高效率≥94.5%,超过85%的高效率区不低于85%;实现装车应用不低于10辆。提供2项相关的环境适应性和安全性评价国家(或行业)标准(或国际标准提案)草案。

4、高效轻量化轮毂电动轮总成开发

研究内容:

突破电动轮集成技术,包括研发电动轮总成的电、磁、热以及整车结构应用等多领域协同仿真技术,突破电动轮液冷结构与动密封、低转矩脉动和NVH、抗振能力和可靠耐久性技术。开发出高效轻量化电动轮总成。

考核指标:

满足A级和A0级纯电动轿车应用的电动轮总成(轮毂电机本体或轮内电机与减速器的总成)峰值功率密度≥2.5kW/kg(≥30秒),峰值转矩密度≥18Nm/kg,连续比功率≥1.8kW/kg,最高效率≥94%,噪声≤75dB(A)。实现小批量装车不低于10辆。

5、一体化驱动电机系统研制

研究内容:

突破高速减速器设计、齿轮加工与研磨、轴类精密加工、铸造壳体技术难关;研究高速驱动电机与减速器结构集成、润滑与冷却系统、NVH技术;掌握电驱动总成批量制造生产工艺与高效检测等产业化技术;开发出新一代高性能电驱动总成产品。

考核指标:

驱动电机及高速减速器的最高转速≥15000转/分,电驱动总成匹配额定功率40-80kW,比功率≥1.8kW/kg(峰值功率/总重量),最高效率≥92%,电驱动总成噪声≤80dB(A),具备电子驻车功能,实现批量装车不低于100台套。

本文来源:2018年电机驱动与电力关键技术发展趋势分析

点击这里,获取更多电机控制设计信息

浏览 1 次
43

页面

订阅 RSS - ADI