ADI

LT8672 是一款有源整流器控制器,该器件 (与一个 MOSFET) 可在汽车环境中为电源提供反向电流保护和整流。在传统上,这项工作是由一个肖特基二极管承担完成的,相比之下,LT8672 的主动保护拥有一些优势:

* 极少的功耗
* 小、可预知、稳定的 20mV 电压降
* 另外,LT8672 还具有多个旨在满足汽车环境中电源轨要求的特点:
* 反向输入保护至 –40V
* 宽输入工作范围:3V 至 42V
* 超快瞬态响应
* 整流 6VP-P,高达 50kHz;整流 2VP-P,高达 100kHz
* 用于 FET 驱动器的集成化升压型稳压器之工作性能优于充电泵器件

图 1 示出了一款完整的保护解决方案。

对输入纹波整流的快速响应

汽车标准 (ISO 16750 或 LV124) 规定,汽车电子控制单元 (ECU) 能够接受一个具有高达 6VP-P (在高达 30kHz 频率下) 之叠加 AC 纹波的电源。LT8672 用于控制外部 MOSFET 的栅极驱动器足够强大,能处理高达 100kHz 的纹波频率,从而最大限度减小了反向电流。图 2 示出了此类 AC 纹波整流的一个例子。

与肖特基二极管相比具有低功耗

当采用图 3 所示的设置时,LT8672 (采用 IPD100N06S4-03 作为外部 MOSFET) 的性能堪与一个肖特基二极管 (CSHD10-45L) 不相上下。这里,位于输入端上的一个 12V 电源用于模仿汽车电压源,而输出端承载了一个 10A 的恒定电流。图 4 示出了这两种解决方案在稳态情况下的热性能。当未采取冷却措施时,LT8672 解决方案的热性能远胜一筹,达到的峰值温度仅为 36°C,而肖特基二极管解决方案的峰值温度则高得多,达到了 95.1°C。

额外的低输入电压操作能力

汽车任务关键型电路必须能够在冷车发动情况下运行,此时的汽车电池电压会骤降至 3.2V。考虑到这一点,许多汽车级电子产品被设计成能在低至 3V 输入的条件下工作。肖特基二极管的可变正向电压降在冷车发动期间会带来一个问题,此时该压降将产生一个 2.5V 至 3V 的下游电压,这对于有些系统的运行而言就过低了。相形之下,LT8672 解决方案则凭借其稳定的 20mV 电压降保证了所需的 3V,从而简化了电路设计并改善系统的坚固性。

当 VBATT 降至 3.2V 时,LT8672 控制型系统 (a) 保持 VIN > 3V,因而使 LT8650S 能保持其输出 VSYS 稳定在 1.8V,而在肖特基二极管系统 (b) 中,LT8650S 的输入电压 VIN 降至低于其最小工作电压,故而使它无法在其输出 VSYS 上保持 1.8V。

集成化升压型稳压器

许多替代型有源整流器控制器采用充电泵为栅极驱动器供电。这些解决方案通常不能提供强大的栅极充电电流和一个稳定的输出电压,因而限制了连续整流的频率范围和性能。LT8672 的集成化升压型稳压器可提供一个严紧调节的栅极驱动器电压和强大的栅极驱动器电流。

结论

LT8672 能够对汽车电源上的高频 AC 纹波进行整流。该器件采用一个集成化升压型稳压器以驱动一个 MOSFET,从而在连续整流过程中实现超快瞬态响应,这相对于充电泵解决方案是一项改进。LT8672 采用纤巧型 10 引脚 MSOP 封装,其具有整流和反向输入保护功能以及低功耗和一个超宽的工作范围 (这对于冷车发动是很可取的)。

作者:Bin Wu

点击这里,获取更多工业自动化技术信息

围观 5
41

作者:Bill Crone,ADI公司医疗保健系统工程师 Analog Devices, Inc.
william.crone@analog.com

内容提要

工程师们可以利用ADI解决方案来应对心电图子系统设计的重大挑战,包括安全、共模/差模干扰、输入动态范围要求、设备可靠性和保护、降噪以及EMC/RFI考虑。

心电图(ECG)是一种常见的医疗记录,在许多恶劣的环境中,它也必须清晰可读并保持精确。无论是医院、救护车、飞机、轮船、诊所还是家里,干扰源无处不在。新一代高度便携式ECG技术使我们能够在更多的环境条件下测量心脏的电活动。随着ECG子系统越来越多地投入医院外应用,制造商面临着持续的降低系统成本并缩短开发时间,同时保持或提高性能水平的压力,这就给ECG设计工程师提出了相当严苛的要求:实现一种安全有效、 能够应对目标使用环境挑战的ECG子系统。

本文说明通常所认为的ECG子系统设计的主要挑战,并提供关于如何应对的各种方法建议。本文讨论的挑战包括安全、共模/差模干扰、输入动态范围要求、设备可靠性和保护、降噪以及EMC/RFI考虑。

挑战1:达到最高安全标准,确保ECG子系统安全有效

安全始终是ECG设计师的头号关注对象。设计师必须严防来自交流电源的电涌或过压,以及经过ECG电极的任何可能超过10 µA rms推荐限值的电流路径影响到病人和操作人员。在ECG子系统本身或其他与病人或操作人员相连的医疗设备发生故障时,可能出现危险电压或电流,ECG设计的终极目标就是确保病人和操作人员安全,不会受此类电压或电流伤害。

详文请阅:http://adi.eetrend.com/files/2018-09/wen_zhang_/100014227-48459-ms-2160cn.pdf

点击这里,获取更多IOT物联网设计信息

围观 7
45

作者:Mark Looney

简介

像倾斜传感器ADIS16209(见附录)这样的传感器系统具有集成度高、规格全面的特点,采用紧凑型封装,并且价格合理,使系统开发人员能够轻松运用自己可能并不熟悉的传感器技术,从而将成本和风险降至最低。由于精度是完全按给定的功率电平确定,因而似乎会约束开发人员降低功耗的能力。但是,对于必须严格管理能量使用的应用,采用周期供电的方式为降低平均功耗提供了突破口。本文将重点讨论周期供电及其对总体功耗的影响。

我们中许多人都是在温馨的家庭环境中长大的,但父母总会冲我们大喊:“离开房间时把灯关上!我们家不是开电厂的!”实际上,他们是在教会我们一项重要的能源管理方法——周期供电,一种在不需要某项功能时关闭其电源的过程,例如在不需要进行测量时关闭传感器系统。这样做能够降低平均功耗,计算公式如下:

PON是系统处于正常工作状态时的功耗。POFF是系统处于关闭状态时的功耗。它与残留电流相关,如电源调节器要维持功率开关或关断模式所需的电流,其典型值在 1 µA左右。开启时间(TON)是传感器系统开启、进行所需测量并重新关闭所需的时间量。关闭时间(TOFF)取决于系统需要进行传感器测量的频繁程度。如果关闭功率远远小于开启功率,则平均功耗实际上与占空比成正比。例如,如果关闭功率为零且占空比为 10%,则平均功耗为正常工作功耗的 10%。

详文请阅:降低高级传感器产品的功耗

点击这里,获取更多IOT物联网设计信息

围观 8
44

作者:Charlie Zhao

如今,人们期望电池充电器能够容易地支持多种化学组成并接受众多的电压输入,包括广泛的太阳能电池板。输入电压范围覆盖到输出电池电压以上和以下的情况越来越常见,因而需要其兼具降压和升压能力 (降压-升压拓扑)。LTC4020 降压-升压型电源管理器和多化学组成电池充电控制器能接受 4.5V 至 55V 的宽范围输入,并产生高达 55V 的输出电压。其降压-升压型 DC/DC 控制器可向电池和系统提供高于、低于或等于器件输入的电压。

充电器可容易地针对多种电池化学组成进行优化。例如:其可遵循一种恒定电流 / 恒定电压 (CV/CC) 充电算法,采用 C/10 或定时终止 (针对基于镍的电池系统);一种采用定时终止的恒定电流 (CC) 特性;或者一种优化的 4 步、3 级铅酸电池充电模式。

用于 25.2V 电池浮动电压的 6.3A 充电器

图 1 示出了一个 15V 至 55V 输入、25.2V/6.3A 降压-升压电池充电器,其具有一个高效率四开关 (M2~M5) 同步降压-升压型 DC/DC 转换器,仅需一个电感器 (L1)。专有的平均电流模式架构采用两个检测电阻器 (RCBRT1 和 RCBRB1) 来监视电感器电流。在该降压-升压型解决方案中,当 VIN 高于 VOUT 时,转换器在降压模式工作;当 VIN 低于 VOUT 时,转换器则工作在升压模式。当 VIN 接近 VOUT 时,转换器工作于四开关降压-升压模式。

图 1:15V 至 55V 输入、25.2V/6.3A 降压-升压型电池充电器

图 2: 针对图 1 转换器的效率与负载电流 IOUT 之关系曲线 (VOUT = 25.2V)

转换器以一个可编程的恒定开关频率运作,该频率处于 50kHz 至 500kHz 的范围内,采用一个电阻来设定 (R13 = 100k,250kHz)。图 1 示出的这款解决方案能够为系统负载提供高达 8A (VOUT = 25.2V)。如图 2 所示,满负载效率 (IOUT = 8A,VIN = 24V) 可达 98% 以上。

LTC4020 采用一个从 BAT 引脚引出的外部反馈电阻分压器以通过 VFB 引脚来设置电池电压。
PowerPath™ (电源通路) FET (M1) 在正常电池充电期间处于导通状态,可能的情况下会在电池与降压-升压型转换器输出之间形成一种低阻抗连接。电池充电电流通过一个检测电阻 (RCBAT1) 来监视。最大平均电池充电电流可容易地通过选择 RCBAT1 的阻值来设置。动态电流限值调整可以通过 RNG/SS 引脚实现。

利用 PowerPath FET 实现即时接通和理想二极管功能

对于一个严重放电的电池,LTC4020 能够自动地将 PowerPath FET (图 1 中的 M1) 配置为一个线性稳压器,从而允许降压-升压型转换器输出升至高于电池电压,同时仍然向电池提供充电电流。该功能被称为 PowerPath 即时接通,此时 PowerPath FET 充当一个高阻抗电流源,负责为电池提供充电电流。

当电池充电器不处于充电周期时 (即是降压-升压型转换器专为系统负载而运作),LTC4020 自动地把 PowerPath FET 配置为一个理想二极管。这允许电池在正常操作期间与转换器输出保持断接。然而,假如系统负载电流超过了降压-升压型转换器的供电能力,则可通过该理想二极管有效地从电池抽取额外的功率。

其他特点

LTC4020 支持基于定时器的充电算法,一个连接在 TIMER 引脚和地之间的电容器负责设置充电周期的完结。

LTC4020 具有电池温度监视和控制功能。通过把一个 NTC (负温度系数) 热敏电阻连接至 NTC 引脚,并将该热敏电阻布设在电池组 (或其他需要的监视位置) 之附近,如果 NTC 引脚电压超出范围 (高于 1.35V 或低于 0.3V),则 LTC4020 将触发一个 NTC 故障并停止电池充电。

LTC4020 具有两个集电极开路输出 (STAT1 和 STAT2),用以报告充电器状态和故障状况。这两个引脚进行了二进制编码。

结论

LTC4020 是一款通用的高电压、高效率降压-升压型电源管理器和多化学组成电池充电器,支持输入电压高于、低于或等于输出向电池或系统供电。其扁平的 (仅高 0.75mm) 耐热性能增强型 38 引脚 5mm x 7mm QFN 封装适合于便携式工业和医疗设备、太阳能供电型系统、军用通信设备、以及 12V 至 24V 嵌入式汽车系统。

点击这里,获取更多工业自动化技术信息

围观 6
36

作者:Mark Cantrell,ADI公司

标准是一种资产——如果您了解它们的话

本文探讨如何有效使用IEC(国际电工委员会)安全标准,以便从数百项可用标准中找出与问题相关的标准,探索设计的限制条件。IEC的标准和支持文件常常被设计人员视为累赘,但如果您对其包含的内容有一些了解,知道如何查找和使用它们,最重要的是知道从哪里起步,那么它们其实是一笔巨大的财富。本文将说明如何使用从多家安全机构免费获得的信息来构建标准之间的关系图。

设计工程师是富有创造力的一群人。在尺寸、成本和性能的约束范围内优化电路设计,好比是艺术家在可用色彩和画布类型的约束范围内描绘肖像。设计工程师的调色盘就是各种可用元器件和最新的架构思想,结合一些原创贡献,就能做出前所未有的东西。衡量设计成功与否的标准是简洁和精致。不幸的是,对设计的简洁性和精致性打击最大的莫过于要遵从洋洋洒洒300页的安全规则手册,而且其中的一些指南看起来并无明确的道理。在处理安全标准上,工程师们似乎在两个极端之间摇摆不定。

一个极端

第一个极端是对安全标准几乎一无所知。例如,有这样一名工程师,他从与别人关于水冷却器的交谈中了解到一些安全规则, 于是就奋勇前进,做出满足这些经验法则的最精致设计,期望在将原型送往安全机构认证时万事大吉。

这对于创新来说是极好的,但如果设计必须重来以满足相关的标准,就很不划算。更糟糕的情况是,某些不安全因素可能逃过认证过程的检查,给最终客户带来伤害。

第二个极端是产品安全在设计中根深蒂固,形成了一种窒息创新的设计文化。每个设计都是基于之前的设计,行之有效的安全技术毫无变化地从一个设计沿用到另一个设计。这种方法通常会产生安全的产品,但不利于设计创新或改良,创造力被限制在项目的细小部分上。这无疑是安全的做法,但设计人员无成就感,而且会妨碍他们推出与竞争对手不同的突破性产品。例如,通过应用IEC 60112所述的相对漏电指数(CTI)测试,可以使实现尺寸更小的隔离器件。按照更高的CTI等级对封装材料进行特性测试,可将封装的爬电距离要求从8 mm降至4 mm,使器件尺寸缩小一倍或更多,进而可缩小PCB的整个隔离边界和应用整体的尺寸。如果设计人员对标准做一些研究,找出解决之道,就能实现此类优化。

为了在这两个极端之间取得平衡,设计人员有必要及时探查安全标准并评估器件和创新技术。但是,这些标准似乎高深莫测,难以把握。

IEC制定和维护的一系列标准应用最为广泛,它发布了数百项世界通用的安全和兼容性标准。但是,设计人员怎么才能知道必须购买、阅读、应用哪些标准呢?所有标准都不是免费的,而且许多公司并没有专职人员来协调安全标准。

解决之道

解决这个问题的一个简单办法是设计机构确定应用和行业适用的顶层系统标准,买下来并弄清楚。有时候,这不是像看起来那么简单。系统级标准代表了适用于产品预期用途的系统安全方面多年经验的精华。这些标准每隔几年更新一次,以反映特定领域的最先进技术。标准本身是由行业领导者、学术界和安全认证机构组成的委员会进行编制和维护。系统级标准通常篇幅很长,可能多达600页,其内容非常详尽,据此足以做出大多数设计和测试决策,而不必购买其它文件。然而,每个系统级标准背后都有大量信息,这些信息可以厘清要求背后的思维过程,说明标准中潜藏的灵活性及其背后的思想。IEC标准的相互关系图可以揭示系统级标准未明确反映的事情。

下面通过一个例子说明从标准预览中可以提取哪些信息,请参考图1。它是信息技术系统级标准IEC 60950的“引用标准”图。引用标准指关于某项主题的权威标准或文件,是应用原标准所不可缺少的文件。为了简化该图,使其不需要折页,我们将其范围限制在隔离相关的主题。文件按照其主要功能和在文件层级中的大致地位而分为若干类别,具体包括:

1. 系统和零部件标准——代表探索的起点。

2. 协调文件——处理特定类型的安全问题,以便能被多种系统级标准使用。
3. 测试方法——以规范形式说明如何评估安全的某一方面以确保获得一致且可比较的结果。
4. 说明文件——解释分析技术和设计原则。
5. 分类文件——将材料和环境分为业界商定的组别。

图1. 支持IEC 60950的绝缘相关文件网

不同类型的文件通过不同的颜色来突出显示它们的相互关系。考察图1可发现文件相互关系的基本结构。系统标准引用协调文件,协调文件引用测试方法,测试方法进而引用说明文件,最后说明文件引用分类文件。这些关系反映的是一般的模式,不是一成不变的。它们可以是系统级标准直接引用的独立文件,或是相互联系的参考文件网。

本例从信息技术标准IEC 60950开始,它是许多应用类型最常用的标准之一。注意,该系统标准引用了其它系统和零部件标准,原因如下:

1. 它们具有相同的绝缘要求。
2. 一个装置可以用作一个子系统,例如开关设备(IEC 60947)。
3. 光耦合器等常用安全器件有其自己的安全标准(IEC 60747-5)。

引用的每一种子系统或器件都可以根据其自己的标准独立认证,从而无需多余的分析和测试便可轻松集成到更大的系统中。还有一点需要注意的是,IEC 60950认证本身是医疗设备认证IEC 60601的一部分,因此它被完整纳入另一个系统级标准。每个系统级标准都引用其自己的支持文件网,图中未显示,仅通过大箭头表示。

IEC 60950的绝缘要求几乎全部来源于关于绝缘的协调文件IEC 60664。这样,许多系统级标准就可以整体引用该绝缘分析,正如上文所述。继续上移便得到测试方法、说明文件和分类文件。

让我们看看如何利用IEC追索文件的知识来探究一个常见问题。开发安全系统时,我们显然想知道绝缘系统的寿命有多长,哪些因素会影响其寿命。IEC 60950系统标准对此并未提供很多指导。关于厚度和距离有许多要求,但并不清楚哪一个与系统的寿命相关,哪一个是用于应对瞬变。另外,关于如何根据这些要求来估算系统寿命也没有说明。研究图1可发现,左上部分处理的是绝缘击穿和耐受性。

主系统标准中删除了几个步骤,很多情况下,这意味着在系统标准反映此信息之前,相关指南和背景已与其它要求合并。

为了回溯基础测试和分析技术,需要获得一个或两个低层标准,本例中是:

1. IEC 61251—电气绝缘材料—交流耐压—简介

2. IEC 62539—电气绝缘击穿数据统计分析指南研究这两份文件之后,就可以回答绝缘寿命问题,或者确定新材料的寿命测试方法。在设计早期获得这些信息可以指导材料的选择和使用,长远来看可以节省时间和资金。探索IEC标准的关系网有助于快速获取这些丰富的信息。

此类文件图对追查IEC甚至ISO体系(也会引用ISO文件,但本文未显示)中的相关资源非常有用,但要找到或创建文件图并不容易。本例中,我们花时间建立了这张图,但为了构建图1,我们并不需要真正拥有其中的任何文件。IEC网站允许预览几乎所有IEC标准,包括目录、文件范围和引用标准。这些信息足以让我们了解特定标准的适用范围及其引用了哪些其它标准。例图就是利用免费预览信息构建的,它让我们有足够的信心来鉴别特定标准。投入时间来构建此类关系图极具意义。

点击这里,获取更多工业自动化技术信息

围观 6
96

5G网络的效率将可能提升为现有4G网络的10倍以上,根据国际研究暨顾问机构Gartner分析,透过这样全新层次的网络,未来通讯服务供货商 (CSP)可以在驾驶人身安全、数据处理与管理等领域与自动驾驶汽车(后简称自驾车)制造商合作,确保未来的市场商机。

自驾车系统与传感器将产生史无前例的大量数据。汽车OEM厂商将得以从中撷取有价值的数据,同时限制相关服务开通的成本。Gartner资深研究分析师Jonathan Davenport表示:“通讯服务供货商有机会成为OEM业者的策略合作伙伴,利用5G技术来解决自驾车OEM业者数据大幅成长的需求。”

到了2025年,自驾车每月上传到云端的车辆及传感器资料将超过1TB,远高于2018年先进连网汽车的资料量(30GB)。Davenport指出:“为把握这个商机,通讯服务供货商须确保将5G纳入未来车辆的设计当中,还有安全及网络联机,这些都是主要商机所在。”

5G网络也将提供自驾车乘客高质量的信息通讯娱乐。Jonathan Davenport认为:“5G网络将使通讯服务供货商在安全、数据分析及娱乐方面成为强化汽车系统的重要伙伴。”

在5G标准化和开发过程持续进行的同时,几家主要的通讯服务供货商正计划在2018年和2019年部署初期的5G暂行标准(prestandard)服务。到了2020年,中国、日本、韩国、澳洲、美国以及一小部分打先锋的欧洲市场,都将在主要城市布建5G服务。Gartner预期接下来三到五年,在这些地区使用第五代移动通讯技术标准(5GNR) 的人口覆盖率将达到95%以上。

就全球来看,这些率先导入5G的国家同时也占整体汽车年销量60%以上。由于同时在5G网络和汽车市场占有领先地位,这些国家将持续成为自驾车设计、开发和生产的领导者;而这些先进5G市场的通讯服务供货商也将取得独特地位,带领OEM厂商的5G服务建立基础的产业商业模式和作业方式。以汽车为主的5G服务可望在2021年以前上路,届时无线连网模块OEM厂商将推出专为满足汽车商业应用的稳健性需求而设计的5G模块。

本文转自:

点击这里,获取更多IOT物联网设计信息

浏览 1 次
38

页面

订阅 RSS - ADI