ADI

当今有哪些工业领域使用流量计?

"若不能度量,则无法管理。"这是工业领域的一句口头禅,尤 其适合于流量测量。简单说来,对流量监测的需求越来越多, 常常还要求更高速度和精度的监测。有几个领域中,工业流量 测量很重要,比如生活废弃物。随着人们越来越关注环境保护, 为使我们的世界更干净卫生、污染更少,废弃物的处置和监测 就变得非常重要。人类消耗着大量的水,随着全球人口增长, 用水量会越来越大。流量计至关重要,既能监测生活废水,也 是污水处理厂过程控制系统不可或缺的一部分。

污水处理厂简图

图1. 污水处理厂简图

流量计还被用于许多工业控制过程,包括化学/制药、食品饮 料、纸浆造纸等。此类应用常常需要在有大量固体存在的情况 下测量流量 — 大部分流量技术不能轻松胜任这一要求。

输送计量领域处理两方之间的产品转移和支付,需要高端流量 计。实例之一是通过大型管道系统输送油品。在这种应用中, 流量测量精度随时间的变化即便很微小,也可能导致某一方损 失或获得重大利益。

电磁感应技术为什么非常适合液体流量测量?

对于液体流量测量,电磁流量计技术有多种优势。它的传感器 一般是连接到管道中,其直径与管道直径一致,因而测量时不 会干扰或限制介质的流动。由于传感器不是直接浸没在液体 中,没有活动部件,因此不存在磨损问题。

电磁方法测量的是体积流量,这意味着测量对流体密度、温度、 压力和粘度等参数的变化不敏感。一旦用水标定电磁流量计, 就可以使用它来测量其他类型的导电流体,无需进一步标定。 这是其他类型流量计所不具备的一个重要优势。

电磁流量计特别适合测量固液两相介质,例如泥浆等带悬浮泥 土、固体颗粒、纤维或粘稠物的高导电率介质。它可用于测量 污水、泥浆、矿浆、纸浆、化学纤维浆及其他介质。这使得它 特别适合食品、制药等行业,利用它可测量玉米糖浆、果汁、 酒类、药物、血浆及其他许多特殊介质。

电磁流量计的工作原理是什么?

电磁流量计的工作原理基于法拉第电磁感应定律。根据法拉第 定律,当导电流体流经传感器的磁场时,一对电极之间就会产 生与体积流量成正比的电动势,其方向与流向和磁场垂直。电 动势幅度可表示为:

其中,E 为感生电势,k 为常数,B 为磁通密度,D 为测量管的内径,v 为测量管内的流体在电极截面轴向上的平均速度。

磁流量计工作原理

图2. 磁流量计工作原理

传感器输出范围是多少?

传感器提供差分输出。其灵敏度典型值为150 μv/(mps)至200 μv/ (mps)。由于激励电流的方向不断交替,因而传感器输出信号 幅度会加倍。对于0.5 米/秒至15 米/秒的流速测量范围,传感 器输出信号幅度在75 μv 至4-6 mV 之间。图3 显示了用恒流 源激励且有流体流经传感器时的传感器输出信号。在传感器输 出引线上捕捉到的示波器图显示,有一个电平非常低的信号位 于较大共模电压上。紫色曲线对应正电极,红色曲线对应负电 极。粉色曲线是将正负电极相减的数学计算通道。低电平信号 位于较大共模电压之中。

电磁流量传感器的输出信号

图3. 电磁流量传感器的输出信号

传感器测量的传统方法是什么?

传统方法大致上是模拟式 — 具有高输入阻抗和高输入共模 抑制性能的前置放大器用来应对传感器漏电流效应,然后是三 阶或四阶模拟带通滤波器和采样保持级,最后是模数转换。典 型模拟前端方法如图4 所示。传感器输出信号首先经由仪表放 大器放大。必须尽量放大目标信号,同时要避免不需要的直流 共模电压引起放大器输出饱和。这通常会将第一级仪表放大器 的增益限制在最多10 倍。带通滤波器级进一步消除直流影响, 并再次放大信号,然后进入采样保持电路 — 正是这个差值信 号代表流速 — 随后送至模数转换器。

传统模拟前端方法

图4. 传统模拟前端方法

影响电磁流量计架构变化的市场趋势有哪些?

有多种行业趋势在呼唤新架构。其中之一是对数据日益增加的 需求。对于液体,监测除流量外的其他属性的能力正在变得越 来越有价值。例如,为了确定液体中可能有哪些污染物,或者 为了确定液体是否有适合特定应用的正确密度/粘度。增加这 种诊断能力有许多此类要求和好处。利用传统模拟方法是无法 轻松获取此类信息的,因为大部分传感器信息会在同步解调阶 段中丢失。

另外,制造工艺持续要求提高生产力和效率。例如在液体投注/ 灌装应用中,增加的灌装节点越来越多;制造工艺规模的扩大, 灌装速度的提高,要求更快速、更精确的流量监测。

液体投注/灌装

图5. 液体投注/灌装

传统上利用机械或称重技术来确定灌装过程中要添加的正确 液体量,或生产工艺中的精确灌装量。这些方式往往非常昂贵, 而且难以扩展。为了满足这种需求,流量计(尤其是针对液体 的电磁流量计)已成为首选技术。

新的电磁流量计架构是什么样子?

过采样方法大大简化了模拟前端设计。模拟带通滤波器和采样 保持电路不再需要。电路中的前置放大器仅有一级仪表放大器 — 在我们的例子中是AD8220 JFET 输入级轨到轨输出仪表放 大器,它可以直接连接到高速Σ-Δ 型转换器。

采用AD8220 和AD717x-x 的过采样架构模拟前端

图6. 采用AD8220 和AD717x-x 的过采样架构模拟前端

对于模拟前端,重要的是什么,它如何影响我的设计?

放大器和ADC 是此类应用中最重要的两个模块。第一级放大 器有几项关健要求。

一个要求是共模抑制比 (CMRR)。液体电解质中的离子会发生 定向运动,因此,电极与流体之间会产生电势,这就是所谓极 化。如果两个电极完全一致,电极上的电势应彼此相等。不同 金属的极化电压在数百毫伏到±2 伏之间不等。这是出现在传 感器输出端和前置放大器输入端的直流共模电压。前置放大器 是抑制此共模电压的关健。

前置放大器的共模抑制

图7. 前置放大器的共模抑制

100 dB 共模抑制比会将0.3 伏直流共模衰减到3 微伏,后者作 为直流失调出现在放大器输出端,可通过校准予以消除。理想 情况下,传感器上的共模电压保持不变,但实际上,它会随时ss 间而变化,并且会受到液体质量或温度等其他因素的影响。共 模抑制比越高,对连续后台校准的需求就会越少,流量稳定性 也越高。

表1. 共模抑制对实际流速的影响

电极的金属材料与电解质液体接触。液体电解质与电极之间的 摩擦会产生较高频率的交流共模电压。虽然幅度通常很小,但 交流共模表现为完全随机的噪声,更难抑制。这就要求前置放 大器不仅具有良好的直流共模抑制比,而且要有出色的较高频 率共模抑制比。AD8220 放大器在直流到5 千赫兹范围内具有 出色的共模抑制比。对于AD8220 B 级,直流到60 赫兹范围 的最小共模抑制比为100 dB,5 千赫兹以下为90 dB,能够很 好地将共模电压和噪声抑制到微伏水平。当共模抑制比为120 dB 时,0.1 伏峰峰值降低到0.1 微伏峰峰值。表2 显示了较差 的CMRR 对输出传感器信号的影响。

AD8220 直流和交流共模抑制效应

图8. AD8220 直流和交流共模抑制效应

前置放大器级的低漏电流和高输入阻抗是又一重要参数,因为 电磁流量传感器的输出阻抗可能高达GΩ。放大器的高输入阻 抗可防止传感器输出过载,避免信号幅度减小。放大器的漏电 流应足够低,这样当它流经传感器时,不会成为一个显著的误 差源。AD8220 的最大输入偏置电流为10 pA,输入阻抗为1013Ω, 因此它能支持电磁流量传感器的广泛输出特性。表2 列出了前 置放大器输入阻抗对10 GΩ 高输出阻抗传感器的影响。

表2. 放大器输入阻抗对流速的影响

最后,0.1 赫兹至10 赫兹范围的1/f 噪声设置应用的噪底。 当增益配置为10 时,AD8220 折合到输入端的电压噪声约为 0.94 μV p-p,它能分辨6 毫米/秒的瞬时流速和小于1 毫米/秒 的累计流速。

如何选择ADC,对应用而言哪些方面比较重要?

过采样方法既带来了挑战,也对ADC 模块提出了更高的性能 要求。由于没有后级模拟滤波器有源增益级,所以仅有一小部 分的ADC 输入范围获得使用。过采样和平均本身不等于性能 的显著提高,因为各传感器周期需要完全建立下来才能用于流 量计算。此外,需要从这些有限的数据点获得足够多的模数转 换样本,从而在固件处理过程中消除意外毛刺。

流量信号采样

图9. 流量信号采样

过采样架构一般要求ADC 数据速率大于20 kSPS,越快越好。 这与实际流量测量没有明确关系。由于不存在模拟带通滤波 器,ADC 输入端会直接看到传感器原始输出。这种情况下, 传感器的上升沿未经滤波,因此ADC 在上升沿和下降沿期间 须具有足够高的分辨率,以便足够准确地捕捉这些边沿。

流量计的精度本身可通过瞬时流量测量或累计流量测量来确 定。流量计标准采用累计流量技术 — 测量长时间(比如30 或60 秒)内某一水量的平均流量。通过这种测量(而非瞬时 流量测量)可确定系统精度为±0.2%。瞬时流量适合需要实时 流速的应用场合。它对电子器件的精度要求要高得多。理论上, 为了分辨5 毫米/秒的瞬时流量,ADC 需要在一个激励周期(约 600 样本的后置FIR 滤波器)内实现20.7 位的峰峰值分辨率。 这可通过模拟前端来实现。

表3. 模拟前端和ADC 的噪声预算

AD7172-2 提供低输入噪声和高采样速度的完美组合,特别适 合电磁流量应用。采用2.5 V 外部基准电压源时,AD7172-2 的典型噪声低至0.47μV p-p。这意味着,最终流量结果的刷新 速率可以达到50 SPS,而不需要增加外部放大级。图10 显示 了采用AD7172-2 的过采样前端电路的噪声曲线。

采用AD8220 和AD7172-2 的过采样架构的折合到输入 端噪声测试结果

图10. 采用AD8220 和AD7172-2 的过采样架构的折合到输入 端噪声测试结果

如何获得更快的响应以满足业界对更高效率的需求?

提高传感器激励频率可以提高流量测量的系统更新速率。这种 情况下,传感器输出的建立时间会缩短,因而可用于平均的样 本数会减少。使用更低噪声的ADC,可以进一步降低折合到 传感器输出端的噪声。采用同样的前端驱动器AD8220,其增 益配置为×10,可以比较更高更新速率下该模拟前端与主要竞 争产品的性能。表4 和图11 显示了与最接近的竞争产品相比, ADI 器件在更高系统更新速率下取得的优势。

表4. 不同传感器激励频率下的测量精度比较

不同传感器激励频率下的测量精度比较

图11. 不同传感器激励频率下的测量精度比较

仪表放大器能否直接驱动ADC,我怎样才能确定?

一般而言,这取决于仪表放大器的驱动能力和ADC 的输入结 构。许多现代精密ADC 是基于开关电容架构。片内采样保持 器呈现为上游放大器的瞬态负载,它必须能让开关电容输入建 立,以便实现精确采样。

等效模拟输入电路

图12. 等效模拟输入电路

下式可用来检查放大器能否驱动ADC。

其中:

BW 为放大器驱动ADC 所需的最小带宽。

MCLK 为ADC 调制器时钟频率(单位为赫兹)。

T 为短路相位时间(单位为秒)。

FS 为ADC 满量程输入范围(单位为V)。

CMV 为ADC 输入范围的共模电压(单位为V)。

Error 为ADC 采样的建立误差。

例如,AD7172-2 的调制器频率为2 兆赫兹,短路相位时间为 10 ns,满量程输入范围为5 V,共模电压为2.5 V,建立误差 为1 ppm。由此得到BW 值为8.7 兆赫兹,这就是当AD7172-2 处于无缓冲模式时,驱动放大器需要的带宽。它超过1.7 兆赫 兹— AD8220 及许多精密仪表放大器的增益带宽积能力。 AD7172-2 的两个ADC模拟输入上均集成真正的轨到轨精密单 位增益缓冲器。它设计用来在全频率范围驱动AD7172-2 输入 级,降低客户的设计复杂度和风险。缓冲器提供高输入阻抗, 典型输入电流仅5 nA,使得高阻抗信号源可以直接连接到模拟 输入。缓冲器全面驱动ADC 内置开关电容采样网络,简化了 模拟前端电路要求,而每个缓冲器的典型功耗仅有0.87 mA。 每个模拟输入缓冲器放大器均完全斩波,就是说,这会使缓冲 器的失调误差漂移和1/f 噪声最小。

如何产生磁场?

通过线圈施加恒定电流,从而在测量管道内部产生磁场;线圈 安装在管道外部附近,常常成对存在,并且互相串联。线圈通 常是数百匝铜线,因此在驱动器电路看来,其是一个较大电感。 线圈电感通常在数十到数百毫亨左右,另外还有50 Ω 到100 Ω 的直流串联电阻。在每个周期内,通过断开和闭合H 电桥上不 同的开关对,驱动器电路改变激励电流方向,因而磁场也改变 方向。为了消除噪声,交替频率一般是电力线频率的整小数倍。 驱动器电路包括一个恒流源和一个H 电桥,受微处理器控制。

磁场产生

磁场产生

图13. 磁场产生

功耗是否重要?

是的。电磁流量计的激励电流可能相当大,从针对较小直径管 道的50 毫安到针对较大直径管道的500 毫安或1 安培不等。 恒流电路若采用线性稳压电路,可能会消耗大量功耗和电路板 面积。

与线性稳压恒流电路相比,开关模式电源可节省功耗。如图所 示,ADP2441 配置为恒流源输出模式。1.2 V ADR5040 输出电 压由两个电阻分压至150 mV。此150 mV 电压施加于ADP2441 电压跟踪引脚,使得电压反馈引脚也保持在150 mV。当在反 馈引脚上使用一个0.6 Ω 电流设置电阻时,ADP2441 便会将其 输出电流调节到预设电流ISET 水平。通过调整连接到ADP2441 反馈引脚的电流设置电阻值,便可调节恒流源。

(a). 利用开关电源和 iCoupler®驱动隔离H 电桥 (b). 利用线性调节电流源和光耦合器驱动隔离H 电桥

(a). 利用开关电源和 iCoupler®驱动隔离H 电桥 (b). 利用线性调节电流源和光耦合器驱动隔离H 电桥

图14 (a). 利用开关电源和 iCoupler®驱动隔离H 电桥 (b). 利用线性调节电流源和光耦合器驱动隔离H 电桥

表5. 推荐开关稳压器

该驱动级设计有何其他优势?

它有显著的面积优势。电磁流量传感器驱动电路,也称为激励 电路,通常与信号调理电路(1 千伏基本隔离一般足够)相隔 离。常规电磁流量变送器普遍使用光耦合器隔离。光耦合器的 可靠性往往很差,而且尺寸相当大。ADuM7440 数字隔离器集 高速CMOS 和单片空芯变压器技术于一体,在一个16 引脚小 型QSOP 封装中提供四个独立隔离通道。

光耦合器与数字隔离器设计的面积比较

图15. 光耦合器与数字隔离器设计的面积比较

与采用光耦合器、线性稳压恒流源、通孔封装的分立场效应管 H 电桥的常规方案相比,使用数字隔离方法不仅可节省功耗,还能节约80%以上的电路面积。

表6. H 电桥驱动级使用的主要器件比较

如何计算流速?

在数字域中交流流量信号仍需要滤波和同步解调。图15 说明 算法如何在数字域中实现同步解调。数字信号处理器发出控制 信号1 和2,这是一对互补逻辑信号,用于电磁流量传感器线 圈激励。在这两个信号的控制下,流经电磁流量传感器线圈的 电流在每个周期都会反向,因而磁场方向和电极上的传感器输 出也会反向。

数字域中的同步解调和流速计算

图16. 数字域中的同步解调和流速计算

例如在第n 个周期,当ADC 样本输入时,数字信号处理器(本 例为ADSP-BF504F)知道控制信号1 和2 的时序与逻辑。这 样,数字信号处理器便可根据线圈驱动控制信号的逻辑状态将 这些ADC 样本安排到静态随机存储器的两个数组中。也就是 说,在正半周期获得的带时间戳样本归入一组,在负半周期采 集的样本归入另一组。随后,每一组均经过FIR(有限脉冲响 应)低通滤波器。滤波器截止频率设置为30 赫兹,允许有用 信号通过,但会抑制电力线频率干扰和高频噪声成分。图17 显示了过采样前端设计中的FIR 滤波器幅频曲线和模拟同步 解调架构中的模拟带通滤波器幅频曲线。

(a). 数字FIR 低通滤波器幅频曲线  (b). 模拟带通滤波器幅频曲线

(a). 数字FIR 低通滤波器幅频曲线  (b). 模拟带通滤波器幅频曲线

图17 (a). 数字FIR 低通滤波器幅频曲线 (b). 模拟带通滤波器幅频曲线

然后,算法减去这两个平均值以获得一个与流速成正比的值。 此值的单位为LSB/(毫米/秒)。该值需要做进一步处理。最终 流速计算如下:

其中:

ΔFlowRate 为从正负激励阶段中减去两个平均值的结果,单位 为LSB。

VREF 为ADC 基准电压,单位为V。

N 为ADC 分辨率位数。

G 为模拟前端增益。

Sensitivity 为传感器的标称灵敏度,单位为伏特/(毫米/秒)。

KT 为变送器系数。

KS 为传感器系数。

KZ 为零点失调。

如何选择合适的处理器?

选择处理器是一个重要问题。业界越来越需要更高的处理能 力,用以支持更复杂的算法处理或增强的诊断/预测功能。另 外,提高电气和工业基础设施的能源效率已成为全球运动。客 户要求以更低的功耗和更实惠的价格获得更高处理能力。

电磁流量计的数字滤波器可能需要大量处理能力。32 位FIR 滤波器要消耗80 MIPS。流速计算、外设通信驱动和数据通信 分别需要40 MIPS、32 MIPS 和20 MIPS。这些相加的总和为 172 MIPS。本设计中,上述任务由最高达到400 MIPS 的数字 信号处理器ADSP-BF504F 完成。这样,已经有将近50%的处 理能力被占用,其中还不包括多层协议堆栈、HART 通信、诊 断、安全监控功能和液晶显示驱动。

表7. MIPS 消耗

片内外设也很重要。数字信号处理器有多种功能要实现,包括 SPI、UART、 I2C和脉冲输出通信。有35 个GPIO 可用于硬件 控制和逻辑输入/输出,例如控制液晶显示器、键盘输入、报 警和诊断等。SRAM 存储器存储滤波器系数、SPI 数据通信、 LCM 数据缓存、机器状态数据和内部状态标志。68 kB 片内静 态随机存取存储器 (SRAM) 满足系统要求,包括一个32 kB L1 指令SRAM/缓存和一个32 kB L1 数据SRAM/缓存。RS-485 和HART 通信也需要存储器。ADSP-BF504F 的4 MB 片内闪 存可用来存储程序数据、滤波器系数和校准参数。

ADSP-BF504F 外设

图18. ADSP-BF504F 外设

未来对处理能力的需求会持续增加。未来满足这种要求, ADSP-BF70x Blackfin® 处理器系列提供高性能DSP,具有同类 一流的800 MMACS 处理能力,而功耗不足100 mW。此系列 由8 款高性价比成员构成,搭载最高1 MB 内置L2 SRAM,使 许多应用无需采用外部存储器,而第二种配置则提供可选的 DDR2/LPDDR 存储器接口。表8 列出了ADSP-BF7xx 系列的 重要特性。

表8. ADSP-BF70x Blackfin 处理器系列

ADI 公司针对电磁流量计解决方案提供何种支持?

ADI 公司开发了一款系统级参考设计,用以支持电磁流量计完 整信号链的原型开发。该系列配置灵活,可连接到任何类型的 电磁流量传感器,施加适当的激励频率和电压即可产生磁场 (由Blackfin 数字信号处理器控制),能够测量传感器输出, 以及应用后处理滤波器和算法来计算流速。ADI 公司在真实的 流量试验台环境中对设计进行标定(如图19 所示),并将标定 系数存储在非易失存储器中。支持单点或多点校准,通过多点 线性化可实现更高的性能。这样做的结果表明:该模拟前端设 计的性能可以达到领先高端流量计的要求。

ADI 完整解决方案

图19. ADI 完整解决方案

相比传统架构,过采样架构有多方面重要优势。面积和成本均 有显著节省 — 分别达到50%和20%。由于能够节省传感器信 号并应用后处理,功耗也会降低,系统性能也得以增强。有关 ADI 参考设计的更多信息,请联系 cic@analog.com.

您是否利用该设计测量过数据?

评估结果

该参考设计进行过测试,我们把它连接到流量标定试验台上的 25 毫米直径电磁流量传感器,介质为室温下的水。激励频率设 置为6.25 赫兹,在0.5 米/秒到2 米/秒范围内,基本误差为读 数的±0.2%。测试结果数据如表9 所示。

表9. 采用DN25 传感器的数字过采样演示板的校准结果

总结

全世界有越来越多的环境法规要求监测和控制来自住宅、商业 和工业的废弃物,尤以欧洲为甚。电磁流量技术是此类应用的 首选技术。传统方法基本上是模拟方法,它有一些缺点,表现 在成本、面积、功耗、响应时间、有限的系统信息等方面。行 业趋势是转向过采样方法。这给ADC 要求带来了重大挑战, 因为更新速率会提高10 倍左右,但平均值的好处得不到利用, ADC 在高数据速率下的噪声要求需要进一步提高。另外还有 功耗挑战需要解决。液体和管道直径均有很多类型,这就需要 能够动态控制功耗,通过一种支持所有类型传感器需求的设计 来将功耗降至最低。Blackfin 数字信号处理器集低功耗和高处 理能力于一体,满足流量计应用的要求。它执行复杂的FIR 滤 波器算法来计算流速,同时具有领先的800 MMACS 处理能力, 而功耗不足100 mW。完整设计相比于之前的技术大大简化, 而且可节省成本、功耗和面积,优势众多。有关ADI 参考设 计的更多信息,请联系 cic@analog.com .

参考电路

Ardizzoni, John. "高速差分ADC 驱动器设计指南." 模拟对话, 第43 卷,2009 年5 月。

Walsh, Alan. "精密SAR 模数转换器的前端放大器和RC 滤波 器设计" 模拟对话,第46 卷,2012 年12 月。

作者介绍

Colm Slattery是ADI公司工业与仪器仪表部的应用工程师。 他最初在ADI做的是测试开发工程师, 曾在中国上海工作了3年,负责支持精密转换器部的现场活动。 任职工业与仪器仪表部之前,Colm在DAC部门担任产品线应用工程师。

Ke Li 于2007年加入ADI公司,担任精密转换器产品线应用工程师,任职地点在中国上海。他曾在安捷伦科技有限公司的化学分析部门担任过四年的研发工程师。李可于1999年获得西安交通大学电子工程学士学位,并于2003年获得西安交通大学生物医学工程硕士学位。他在2005年成为中国电子学会专业会员。

点击这里,获取更多IOT物联网设计信息

围观 9
34

物联网具有不可否认的影响,并将继续吸引更多的风投投资高度创新的项目。

在2016-2017年,物联网的发展趋势得到了广泛的接纳。在2018年,更多的想法和实际的复杂问题将被解决,并上升到其下一层实现。由于设备已经可以数字化表达,因此对它们进行监控变得更加容易,以便实时数据流更接近于相对和可靠。

这是一种快速的趋势,可以通过多年来预测的物联网趋势来实现。

1、区块链和物联网的混合

区块链是2016年以来最新的功能。基于区块链的加密数字货币的惊人胜利,使这项技术成为无缝交易的旗手,从而降低了成本,并消除了对中心数据源的信任。

区块链的工作原理是通过一种安全、加速和透明的模式来增强信任的参与。企业可以通过自动化编码的交易和更快的交易来获益。因此,物联网通道的实时数据可以在这样的交易中被利用,同时保护所有相关各方的隐私。对于物联网来说,安全仍然是首要挑战,而授权区块链的加密过程可以帮助解决。区块链提供了防止数据被盗的安全保障,而这正是物联网网络所需要的设备。

2、风险资本家会变得更加自信

物联网具有不可否认的影响,并将继续吸引更多的风投投资高度创新的项目。它是少数几个对新兴市场和传统创业投资都有兴趣的市场之一。尽管明年的增长将受到严峻的考验,而真正的潜力尚未被发掘出来,但物联网企业将会比其他所有人都更受青睐。交通、零售、保险和矿业中约有28%的企业确信,向他们的服务模式添加物联网。

3、愈加依赖大数据分析

物联网的核心是动态数据共享。大数据分析将有助于构建响应性的应用程序。将物联网数据通道与机器学习引擎结合起来,以获取需求分析见解,今年已经初具发展势头,并将在2018年迎来井喷。作为物联网服务供应商,企业必须将他们的创新引导到预测分析的基础上。

随后,对大数据技能的需求将上涨75%,并且在HR系统中使用数据已经开始小试牛刀。尽管大多数物联网服务提供商都强调了这类技术人才的短缺,但与研发密切相关的内部学习项目早已敲响了警钟。

4、人工智能也将发挥作用

机器学习能力是最被认可的人工智能技术,它可以基于预测思维来计算数据,无需人工编程,也无需在物联网通道中触发实时任务。也就是说,通过从编程指令中激发实时提醒,物联网将会变得智能,捕捉从我们的日常习惯中获得的指令,并为我们执行手工任务。

苹果的“Siri”,甚至自动咖啡。这将使物联网从智能设备到装备齐全的智能家居实现飞跃。具有安全的事务环境的这些精确信息可以进行创新,以提高操作效率和提升客户参与度。

5、设备将成为一个营销平台

由于将技术融入我们的日常生活中,我们更能接受,基于我们的状态自动推荐更新相关的品牌,在日常生活中,我们会追求更个性化的生活习惯客户数据在这里具有重要的意义,利用它进行个性化营销将继续增长。

我们提供的信息会立即将信息传递到各种营销平台上。例如,汽车服务运营商在他们访问你的驾驶数据后,提供了丰厚的折扣,而保险公司也分享了你的详细信息。

6、连接设备的数量将会加倍

在过去5年里,物联网项目的快速普及催生了数十亿个互联设备。随着消费者继续沉迷于更多的电子产品,物联网将会爆发。联网设备的数量从2015年的数百万(4.9)增长到2016年的数十亿(6.1)。到2018年,这一比例将至少翻一番,到2021年将达到460亿英镑。

更多的物联网设备将进入这一渠道,比以往任何时候都要多。这是我们对电子产品的直接依赖,这就是我们的未来是如何形成的。

参见:约有三分之二的美国人使用与ios设备连接的设备。

这些趋势的粘合剂

他们的首要任务是窄带物联网(nb-物联网),这是一个低功耗的区域网络,足以满足物联网设备的需求——更小的带宽,更大的连接密度,更低的运营成本和持久的电池寿命。不要错过可穿戴设备,管理资产呈现出更高程度的个性化智能数据共享。

物联网并不止于此!以前人们怀疑过的一系列发明现在终于可以看到曙光了。

本文转自:2018年提升物联网影响力的6大趋势

点击这里,获取更多电机控制设计信息

围观 2
26

作者:Eric Carty、Padraig Fitzgerald和Padraig McDaid ADI公司

简介

过去30年来,MEMS开关一直被标榜为性能有限的机电继电器的出色替代器件,因为它易于使用,尺寸很小,能够以极小的损耗可靠地传送0 Hz/dc至数百GHz信号,有望彻底改变电子系统的实现方式。这种性能优势会对大量不同的设备和应用产生重要影响。在MEMS开关技术的帮助下,很多领域都将达到前所未有的性能水准和尺寸规格,包括电气测试与测量系统、防务系统应用、医疗保健设备。

 ADI MEMS开关技术

图1. ADI MEMS开关技术

目前的开关技术都或多或少存在缺点,没有一种技术是理想解决方案。继电器的缺点包括带宽较窄、动作寿命有限、通道数有限以及封装尺寸较大。与继电器相比,MEMS技术一直就有实现最高水平RF开关性能的潜力,其可靠性要高出好几个数量级,而且尺寸很小。但是,难以通过大规模生产来大批量提供可靠产品的挑战,让许多试图开发MEMS开关技术的公司停滞不前。Foxboro Company是最早开始MEMS开关研究的公司之一,其于1984年申请了世界最早的机电开关专利之一。

ADI公司自1990年开始通过一些学术项目涉足MEMS开关技术研究。到1998年,ADI公司终于开发出一种MEMS开关设计,并根据该设计制作了一些早期原型产品。2011年,ADI公司大幅增加了MEMS开关项目投入,从而推动了自有先进MEMS开关制造设施的建设。现在,ADI公司已能够满足业界一直以来的需求:量产、可靠、高性能、小尺寸的MEMS开关取代衰老的继电器技术。

ADI公司与MEMS技术有着深厚的历史渊源。世界上第一款成功开发、制造并商用的MEMS加速度计是ADI公司于1991年发布的ADXL50加速度计。ADI公司于2002年发布第一款集成式MEMS陀螺仪ADXRS150。以此为开端,ADI公司建立了庞大的MEMS产品业务和无可匹敌的高可靠性、高性能MEMS产品制造商声誉。

ADI公司已为汽车、工业和消费电子应用交付了逾10亿只惯性传感器。正是这种优良传统所带来的经验和信念将MEMS开关技术变为现实。

MEMS开关基本原理

ADI MEMS开关技术的关键是静电驱动的微加工悬臂梁开关元件概念。本质上可以将它视作微米尺度的机械开关,其金属对金属触点通过静电驱动。

开关采用三端子配置进行连接。功能上可以将这些端子视为源极、栅极和漏极。图2是开关的简化示意图,情况A表示开关处于断开位置。将一个直流电压施加于栅极时,开关梁上就会产生一个静电下拉力。这种静电力与平行板电容的正负带电板之间的吸引力是相同的。当栅极电压斜升至足够高的值时,它会产生足够大的吸引力(红色箭头)来克服开关梁的弹簧阻力,开关梁开始向下移动,直至触点接触漏极。该过程如图2中的情况B所示。因此,源极和漏极之间的电路闭合,开关现已接通。拉下开关梁所需的实际力大小与悬臂梁的弹簧常数及其对运动的阻力有关。注意:即使在接通位置,开关梁仍有上拉开关的弹簧力(蓝色箭头),但只要下拉静电力(红色箭头)更大,开关就会保持接通状态。最后,当移除栅极电压时(图2中的情况C),即栅极电极上为0 V时,静电吸引力消失,开关梁作为弹簧具有足够大的恢复力(蓝色箭头)来断开源极和漏极之间的连接,然后回到原始关断位置。

MEMS开关动作过程,A和C表示开关关断,B表示开关接通

图2. MEMS开关动作过程,A和C表示开关关断,B表示开关接通

图3显示了利用MEMS技术制造开关的四个主要步骤。开关建构在一个高电阻率硅晶圆(1)上,晶圆上面沉积一层很厚的电介质,以便提供与下方衬底的优良电气隔离。利用标准后端CMOS互连工艺实现到MEMS开关的互连。低电阻率金属和多晶硅用于形成到MEMS开关的电气连接,并且嵌入到电介质层(2)中。标示为红色的金属过孔(2)用于提供到开关输入、输出和栅极电极的连接,以及焊芯片上其他位置的引线焊盘的连接。悬臂式MEMS开关本身利用牺牲层进行表面微加工,在悬臂梁下方产生气隙。悬臂式开关梁结构和焊盘(3)利用金形成。开关触点和栅极电极由低电阻率金属薄膜沉积在电介质表面而形成。

MEMS开关制造概览

图3. MEMS开关制造概览

引线焊盘也是利用上述步骤制成。利用金线焊接将MEMS芯片连接到一个金属引线框,然后封装到塑料四方扁平无引线(QFN)封装中以便能轻松表贴在PCB上。芯片并不局限于任何一种封装技术。这是因为一个高电阻率硅帽(4)被焊接到MEMS芯片,在MEMS开关器件周围形成一个气密保护外壳。无论使用何种外部封装技术,这种气密外壳都能提高开关的环境鲁棒性和使用寿命。

图4为采用单刀四掷(ST4T)多路复用器配置的四个MEMS开关的放大图。每个开关梁有五个并联阻性触点,用以降低开关闭合时的电阻并提高功率处理能力。

特写图显示了四个MEMS悬臂式开关梁(SP4T配置)

图4. 特写图显示了四个MEMS悬臂式开关梁(SP4T配置)

如开头所述,MEMS开关需要高直流驱动电压来以静电力驱动开关。为使器件尽可能容易使用并进一步保障性能,ADI公司设计了配套驱动器集成电路(IC)来产生高直流电压,其与MEMS开关共同封装于QFN规格尺寸中。此外,所产生的高驱动电压以受控方式施加于开关的栅极电极。它以微秒级时间斜升至高电压。斜升有助于控制开关梁的吸引和下拉,改善开关的动作性能、可靠性和使用寿命。图5显示了一个QFN封装中的驱动器IC和MEMS芯片实例。驱动器IC仅需要一个低电压、低电流电源,可与标准CMOS逻辑驱动电压兼容。这种一同封装的驱动器使得开关非常容易使用,并且其功耗要求非常低,大约在10 mW到20 mW范围内。

驱动器IC(左)和MEMS开关芯片(右)安装并线焊在金属引线框架上

图5. 驱动器IC(左)和MEMS开关芯片(右)安装并线焊在金属引线框架上

可靠性

可靠性如何是所有新技术的主要“教义”之一,ADI公司对此极为关注。新型MEMS技术制造工艺是支持开发机械鲁棒、高性能开关设计的基础。它与气密性硅帽工艺相结合,是实现真正可靠的长寿命MEMS开关的关键。为将MEMS开关成功商业化,需要进行大量针对MEMS开关的特定可靠性测试,例如开关循环、寿命测试、机械冲击测试等。除了这种认证之外,为保证达到尽可能高的质量水准,还利用全部标准IC可靠性测试对器件进行了质量认证。表1是已进行的环境和机械测试总结。

表1. MEMS开关技术认证测试

在RF仪器仪表应用中,开关动作寿命长至关重要。相比于机电继电器,MEMS技术的循环寿命高出一个数量级。85°C时的高温工作寿命(HTOL I)测试和早期寿命故障(ELF)认证测试,严格保证了器件的循环寿命。

持续导通寿命(COL)性能是MEMS开关技术的另一个重要参数。例如,RF仪器仪表开关使用情况各异,某个开关可能长期保持接通状态。ADI公司已知晓这种情况,并竭力让MEMS开关技术实现出色的COL性能以降低寿命风险。通过深入开发,COL性能已从最初的50°C下7年(平均失效前时间)提升到业界领先的85°C下10年。

MEMS开关技术经历了全面的机械鲁棒性认证测试。表1中共有5项测试用于确保MEMS开关的机械耐久性。MEMS开关元件的尺寸和惯性更小,因此它的可靠性能比机电继电器有显著提高。

无与伦比的性能优势

MEMS开关的关键优势是它在一个非常小的表贴封装中实现了0 Hz/dc精密性能、宽带RF性能以及比继电器优越得多的可靠性。

任何开关技术最重要的品质因数之一是单个开关的导通电阻与关断电容的乘积。它通常被称为RonCoff乘积,单位为飞秒(fs)。当RonCoff降低时,开关的插入损耗也会降低,关断隔离性能随之提高。

采用ADI MEMS开关技术的单个开关单元的RonCoff乘积小于8,这保证了该技术是实现世界一流开关性能的不二选择。利用这一根本优势和精心设计,便可达到优异的RF性能水平。图6显示了一款QFN封装、单刀双掷(SPDT) MEMS原型开关的实测插入损耗和关断隔离性能。26.5 GHz时的插入损耗仅为1 dB,QFN封装实现了32 GHz以上的带宽。

SPDT MEMS开关性能,QFN封装

图6. SPDT MEMS开关性能,QFN封装

图7显示了在一款单刀双掷(SPST) MEMS原型开关管芯上利用探针测量测得的插入损耗和关断隔离性能的宽频扫描结果。40 GHz时的插入损耗为1 dB,关断隔离约为-30 dB。

SPST MEMS开关性能,片上探针测量

图7. SPST MEMS开关性能,片上探针测量

此外,MEMS开关设计固有的超高性能表现在如下方面。

* 精密直流性能:已实现

* 线性度性能:输入信号音为27 dBm时,三阶交调截点(IP3)超过69 dBm。在全部工作频段上有提高到75 dBm以上的潜力。

* 动作寿命:保证至少10亿次动作循环。这远远超过了当今市场上的任何机械继电器,后者的额定循环次数通常少于1000万次。

* 功率处理(RF/dc):已在全部工作频段上测试了40 dBm以上的功率,在较低或较高频率时性能不下降。对于直流信号,该开关技术允许200 mA以上的电流通过。

最后,无论什么市场,小尺寸解决方案通常都是一项关键要求。MEMS在这方面同样具有令人信服的优势。图8利用实物照片比较了封装后的ADI SP4T(四开关)MEMS开关设计和典型DPDT(四开关)机电继电器的尺寸。MEMS开关节省了大量空间,其体积仅相当于继电器的5%。这种超小尺寸显著节省了PCB板面积,尤其是它使得PCB板的双面开发利用成为可能。这一优势对于迫切需要提高通道密度的自动测试设备制造商特别有价值。

ADI引线框芯片级封装MEMS开关(四开关)与典型机电式RF继电器<br />
(四开关)的尺寸比较

图8. ADI引线框芯片级封装MEMS开关(四开关)与典型机电式RF继电器
(四开关)的尺寸比较

结语

ADI公司开发的MEMS开关技术使开关性能和尺寸缩减实现了大跨越。同类最佳的0 Hz/dc至Ka波段及以上的性能、比继电器高出若干数量级的循环寿命、出色的线性度、超低功耗要求以及芯片级封装,使该MEMS开关技术成为ADI公司开关产品的革命性新突破。

参考文献

Carty,E.,Fitzgerald,P.,Stenson,B.,McDaid,P.,Goggin,R.:“集成驱动器电路的DC至K波段超长导通寿命RF MEMS开关的开发”,欧洲微波会议(EuMC),欧洲微波协会(EuMA),2016年10月
4-6日。

Gabriel Rebeiz。“RF MEMS的理论、设计与技术”,Wiley,2003年。

Goggin,R.,Fitzgerald,P.,Stenson,B.,Carty,E.,McDaid,P.:“集成驱动器电路、采用小型QFN封装、适合RF仪器仪表应用的可靠RFMEMS开关的商业化”,国际微波研讨会(IMS),IEEE MTT-S国际大会,2015年5月17-22日。

Goggin,R.,Wong,J.E.,Hecht,B.,Fitzgerald,P.,Schirmer,M.:“采用标准塑料封装的全集成式、高良品率、高可靠性直流接触MEMS开关技术与控制IC”,2011 IEEE传感器研讨会,pp. 958、961,2011年10月28-31日。

Maciel,J.,Majumder,S.,Lampen,J.,Guthy,C.:“坚固可靠的阻性MEMS开关”,微波研讨会文摘 (MTT),IEEE MTT-S国际大会,2012年6月17-22日。

Rebeiz G.,Patel C.,Han S.,Ko Chih-Hsiang.,Ho K.:“探寻可靠的MEMS开关”,IEEE微波杂志,2013年一/二月号。

Stephen D. Senturia,“微系统设计”,Springer,2000年。

作者简介

Eric Carty于1998年获得爱尔兰国立梅努斯大学实验物理硕士学位。加入ADI公司之前,他担任了10年的RF无源器件设计工程师。2009年,他成为ADI公司的高级应用工程师,主要从事RF开关和MEMS技术的研发工作。他目前负责管理ADI公司的开关与多路复用器应用部门。

Padraig Fitzgerald 2002年毕业于爱尔兰利默里克大学,获得电子工程学士学位。同年,他加入ADI公司爱尔兰利默里克分公司,担任固态开关评估工程师,2007年转入开关设计领域。Padraig完成了科克理工学院关于MEMS开关可靠性的研究硕士课程。他目前是精密开关部的高级设计师兼MEMS开关器件设计师。

Padraig McDaid 1998年毕业于爱尔兰利默里克大学,获得电子工程学士学位。Padraig负责管理ADI公司的开关与多路复用器市场营销部门,重点关注MEMS技术研发。2009年加入ADI公司之前,Padraig曾在多家跨国公司和中小型企业从事过RF设计、应用和营销工作。

围观 8
63

国家统计局11月27日发布的工业企业财务数据显示,2017年1-10月份,规模以上工业企业利润同比增长23.3%,增速比1-9月份加快0.5个百分点。其中,10月份利润同比增长25.1%,增速虽比9月份减缓2.6个百分点,但仍是今年以来月度较高增速。

工业企业利润保持较快增长的同时,企业效益也在持续改善。

一、成本费用持续下降,利润率持续上升

1-10月份,规模以上工业企业每百元主营业务收入中的成本费用为92.84元,同比减少0.51元;其中,每百元主营业务收入中的成本为85.46元,同比减少0.26元;每百元主营业务收入中的费用为7.38元,同比减少0.25元。1-10月份,工业企业主营业务收入利润率为6.24%,同比提高0.55个百分点。

二、亏损企业减少,亏损额下降

1-10月份,规模以上工业企业中,亏损企业同比减少1.6%;亏损企业亏损总额同比下降18.1%。

三、资金周转加快,经营效率提高

10月末,规模以上工业企业应收账款平均回收期为38天,同比减少1天;产成品存货周转天数为13.9天,同比减少0.6天。1-10月份,工业企业每百元资产实现的主营业务收入为112.1元,同比增加4.6元;人均主营业务收入为133.9万元,同比增加15.9万元。

四、企业杠杆率下降,经营风险持续降

10月末,规模以上工业企业资产负债率为55.7%,同比降低0.5个百分点。其中,国有控股企业资产负债率为60.9%,同比降低0.5个百分点,比9月末降低0.1个百分点。

五、煤炭、钢铁、化工、石油等行业新增利润多

1-10月份,煤炭开采和洗选业、黑色金属冶炼和压延加工业、化学原料和化学制品制造业、石油和天然气开采业4个行业合计新增利润6034亿元,对全部规模以上工业企业利润增长的贡献率为51.2%。

六、高技术制造业、工业战略性新兴产业保持较快增长

1-10月份,高技术制造业主营业务收入同比增长13.6%,增速比全部规模以上工业高1.2个百分点。初步测算,1-10月份,工业战略性新兴产业主营业务收入同比增长13.1%,增速比全部规模以上工业高0.7个百分点;高端装备制造业、新材料产业利润同比分别增长29.3%、29%,均高于规模以上工业利润平均增速。

本文来源:国家统计局:前10个月规模以上工业企业利润同比增长23.3%

点击这里,获取更多电机控制设计信息

浏览 1 次
47

目前已到2017年年底,大家都在分析2018年中国新能源汽车技术发展趋势。而科技部《新能源汽车2018 年重点专项申报指南》已经发布,对企业而言很有指导意义。下面是笔者学习《申报指南》后,对2018 年度电机驱动与电力关键技术发展趋势的分析,分享如下:

一、中国新能源汽车重大共性关键技术的主攻方向

《申报指南》列出2018年中国新能源汽车技术的主攻方向包括:动力电池与电池管理系统,电机驱动与电力,电子、电动汽车智能化,燃料电池动力系统,插电/增程式混合动力系统,纯电动力系统。一共是6个方向,再细分 24 个研究任务。

笔者理解:

①企业与政府规划要保持一致,企业经营活动(含技术攻关)要在政府的顶层设计下开展。
②企业2018年具体的新能源汽车研究(开发)项目必须在6个方向下、24个研究任务之中;
③企业具体技术研究和开发项目,理应与中央政府政府年度计划技术攻关项目对应起来。

二、2018 年度电机驱动与电力关键技术研究任务

1、商用车高可靠性车载电力电子集成系统开发

①研究内容:

研究基于功率器件级集成的多变流器拓扑结构和绝缘栅双极型晶体管(ⅠGBT)芯片集成封装技术;研究机-电-热集成设计技术及电磁兼容技术;研究硬件安全冗余、软件容错等系统功能安全技术;研究集成电力电子控制器产品(简称 PCU)的可靠性及测试方法。开发出适用于 10~12 米纯电动、插电式、增程式客车的 PCU 产品。

②考核指标:

商用车电力电子集成控制器产品比功率≥10.0kVA/kg;控制器最高效率≥98%,效率大于 90%的高效区≥80%,集成控制器电磁兼容性能(EMC)(带载)、可靠性和产品设计寿命满足整车要求,PCU 产品寿命≥8 年(以关键器件寿命设计文件与加速寿命验证测试报告作为验收依据);配套整车产品完成公告,并批量装车。

笔者解读:

Ⅰ)功率器件级集成的多变流器拓扑结构和绝缘栅双极型晶体管(ⅠGBT)是核心竞争力技术和产品,是中国发展新能源汽车的短板。
Ⅱ)适用于 10~12 米纯电动、插电式、增程式客车的 PCU 产品,是主攻方向。
Ⅲ)集成控制器电磁兼容性能(EMC)(带载)、可靠性和产品设计寿命满足整车要求,目前公交车整车生产企业急需这样的产品。
Ⅳ)中国发展新能源汽车必须要能自己研发和生产功率器件【绝缘栅双极型晶体管(ⅠGBT)】,否则,弯道超车就只是一个口号而已。

2、轿车高可靠性车载电力电子集成系统开发

①研究内容:

研究基于功率器件级集成的多变流器拓扑结构,开发机-电-热集成设计技术及电磁兼容技术;研发芯片集成封装技术及硬件安全冗余、软件容错等系统功能安全技术;研究集成电力电子控制器产品(简称 PCU)的可靠性、寿命设计及测试方法。开发出适用于 A 级、B 级插电式/增程式混合动力乘用车的PCU 产品。

②考核指标:

PCU 产品设计安全等级达到或超过 ⅠSO 26262ASⅠL- C 等级;PCU 产品设计寿命不少于 10 年(以关键器件寿命设计文件与加速寿命验证测试报告作为验收依据);功率密度≥15.0kVA/L(对于插电式、增程式混合动力车型按驱动电机控制器和发电机控制器峰值功率之和计算);控制器最高效率≥98%,效率大于 90%的高效区≥80%,集成控制器 EMC(带载)、可靠性和产品设计寿命满足整车要求,配套整车产品完成公告,并批量装车。

笔者解读:

Ⅰ)商用车和轿车对功率器件级集成要求基本相同,功率器件是基础性产品,其技术共用。
Ⅱ)整车技术水平升级和产品竞争力,没有适用的功率器件,就无法用力。
Ⅲ)电机控制器目前还做不到与电机一体化,主要的原因是功率器件高温指标无法与电机工作温度匹配。
Ⅳ)如果功率器件无法集成到电机内部,需要突破中央电机布置模式,困难重重。这里提醒开发四轮驱动的整车企业,要注意该技术发展趋势。

3、基于碳化硅技术的车用电机驱动系统技术开发

①研究内容:
攻克低感高密度碳化硅模块封装、高温高频电容器设计与封装技术难关;研究碳化硅变流器高功率密度,高频化永磁电机设计与工艺,电机驱动系统高效控制技术,噪声、振动、平顺性(NVH)和 EMC 等技术;研究碳化硅控制器与驱动电机一体化集成技术;研究碳化硅电机驱动系统的全寿命周期成本评价方法;开发出车用大电流碳化硅模块、车用高温高频大电流电容、全碳化硅电机控制器以及整个电机驱动系统。
②考核指标:

电力电子模块电流≥400A,电压≥750V;电容器容积比≥1.4uF/mL;碳化硅电机控制器功率密度≥30kW/L,最高效率≥98.5%,超过 90%的高效区≥90%;电机峰值功率密度≥4.0kW/kg(30 秒),连续比功率≥2.5kW/kg;电机最高效率≥96.5%,电机及其控制系统最高效率≥94.5%,超过 85%的高效率区不低于 85%;实现装车应用不低于 10 辆。提供 2 项相关的环境适应性和安全性评价国家(或行业)标准(或国际标准提案)草案。
笔者解读:

Ⅰ)碳化硅是用石英砂、石油焦(或煤焦)、木屑为原料通过电阻炉高温冶炼而成的一种耐火材料。化硅粉末涂布可提高其耐磨性而延长使用寿命1~2倍;碳化硅的硬度很大,莫氏硬度为9.5级,仅次于世界上最硬的金刚石(10级),具有优良的导热性能,是一种半导体,高温时能抗氧化。这就是说,车用电机采用碳化硅材料是基本趋势。
Ⅱ)开发出车用大电流碳化硅模块、车用高温高频大电流电容、全碳化硅电机控制器以及整个电机驱动系统是基本趋势。
Ⅲ)新能源汽车采用永磁电机是基本趋势,目前特斯拉电动车的电机已经由感应电机技术路线转向永磁电机。永磁电机的最大优势是在高速电机方面。

4、高效轻量化轮毂电动轮总成开发

①研究内容:

突破电动轮集成技术,包括研发电动轮总成的电、磁、热以及整车结构应用等多领域协同仿真技术,突破电动轮液冷结构与动密封、低转矩脉动和 NVH、抗振能力和可靠耐久性技术。开发出高效轻量化电动轮总成。

②考核指标:

满足A级和A0级纯电动轿车应用的电动轮总成(轮毂电机本体或轮内电机与减速器的总成)峰值功率密度≥2.5kW/kg(≥30秒),峰值转矩密度≥18Nm/kg,连续比功率≥1.8kW/kg,最高效率≥94%,噪声≤75dB(A)。实现小批量装车不低于 10 辆。

笔者解读:

Ⅰ)轮毂电机本体或轮内电机与减速器的总成应用方向是A级和A0级纯电动轿车;
Ⅱ)目前主要要求能实现小批量装车不低于 10 辆。这说明,该技术尚处于研究阶段,处于验证期。
Ⅲ)商业车推行上规模用轮毂电机,还没有到时间。

5、一体化驱动电机系统研制

①研究内容:

突破高速减速器设计、齿轮加工与研磨、轴类精密加工、铸造壳体技术难关;研究高速驱动电机与减速器结构集成、润滑与冷却系统、NVH 技术;掌握电驱动总成批量制造生产工艺与高效检测等产业化技术;开发出新一代高性能电驱动总成产品。

②考核指标:

驱动电机及高速减速器的最高转速≥15000 转/分,电驱动总成匹配额定功率 40-80kW,比功率≥1.8kW/kg(峰值功率/总重量),最高效率≥92%,电驱动总成噪声≤80dB(A),具备电子驻车功能,实现批量装车不低于 100 台套。

笔者解读:

Ⅰ)一体化驱动电机系统是一个总的发展趋势,要一步一步来推进。要从乘用车开始验证;

Ⅱ)驱动电机及高速减速器的最高转速≥15000 转/分,对我国而言已经是较高指标,离国际上水平最高转速≥18000 转/分距离较远;

Ⅲ)高速驱动电机与减速器结构集成,是一个比较高目标。尤其的商用车而言更难。

总结:电机驱动与电力关键技术是瓶颈之一。目前中国这方面与国际上先进相比,差距是明显的。弯道超车,也必须要科学的精神,一步一步来推进,急不得。

(来源:电动汽车资源网EV江湖 雷洪钧)

本文来源:2018 年度电机驱动与电力关键技术发展趋势分析

点击这里,获取更多电机控制设计信息

围观 3
73

作者:Hariharan Mani

简介

本应用笔记解答了一系列有关ADI公司ADE产品的常见问题。主要涉及一般问题和更有针对性的问题,包括特定产品相关问题,以及电表配置信息和问题。

一般特性

如何获得初始产品样片和评估板?

通过您的当地授权代理商或销售代表申请预发布产品(含初始数据手册的产品)的样片。在线获取ADI公司的销售和代理商列表。务必注明预发布产品。若提供初始数据手册,则在其“订购指南”部分应含有评估板产品型号。

如何获得与评估板相关的评估工具和软件?

评估板套件包含一张光盘,内有LabVIEW®可执行文件和微控制器代码,以及驱动程序软件。对于较新的IC,大部分这类信息都可在线获得。此外,代码可单独向感兴趣的客户提供。

如何获得有关使用ADE产品的技术支持?

中文技术论坛是ADI公司的在线支持社区。可在“电能监控与计量”社区获得ADE系列产品的支持。来自全世界的客户可通过社区提交问题、查看已有问题和回答,以及参与讨论。

目前市场上有哪些不同的ADE产品?

可在线查看目前提供的不同ADE产品。该网站包含所有单相和三相ADE产品,并列出所有解决方案的不同特性。另外,还可在此网站上找到新产品发布和其他有关ADE产品系列的最新信息。

详文请阅:ADI公司电能产品(ADE):常见问题解答(FAQ)

点击这里,获取更多电机控制设计信息

浏览 1 次
60

页面

订阅 RSS - ADI