ADI

Bruce Petipas 应用工程师 ADI公司

在今天的数据采集系统(DAQ)中,需要不断突破性能极限。系统设计人员需要更高的速度、更低的噪声和更优的总谐波失真(THD)性能,所有这些都有可能实现,但却并非免费。实现这些性能改进通常需要更大的工作电流,而更大的工作电流则会产生更高的功耗。但是,在许多应用中,功耗敏感性也越来越受关注。原因有很多种。可能是由于应用是一种利用纽扣电池进行工作的远程系统,其主要关注点是电池寿命。也可能是由于应用是一种多通道系统,其通道数较多、电路密度较高,会造成热量集中,从而产生由温度引起的漂移问题。无论何种情况,最大限度降低电流消耗和功耗都是重中之重。系统设计人员必须权衡更高性能和更低功耗带来的竞争优势。解决此问题的一种途径是借助一个称为动态功耗调节(DPS)的过程。

图1. 基于SAR型ADC的数据采集子系统的框图

简单而言,DPS就是一个在需要时启用电子元件、在不需要时禁用电子元件的动态过程。图1所示为一个典型的基于SAR型ADC的数据采集子系统。SAR型ADC的一个主要属性是其功耗随吞吐速率而变化,这使其非常适合功耗敏感型应用。以往,ADC驱动器和基准电压源缓冲器不能与SAR一样享有自动功耗调节功能。它们通常会在系统运行时上电并启用,这样会消耗过多的电能。假设启用时间足够短,便可以动态方式驱动放大器关断引脚,从而禁用ADC转换之间的放大器。这就是动态功耗调节。通过对放大器运用DPS,可大幅降低其平均电流消耗。借助DPS,放大器静态电流随关断引脚正在被驱动的负载周期而变化。理论平均静态电流可由下式得出

其中:

本文的其余部分将聚焦于ADC驱动器放大器,但DPS概念也可运用至基准电压源缓冲器,而且得到的结果类似。

图2. 在选定tON (与一直启用的放大器相关)时进行DPS的理论放大器功耗

图2显示了ADC驱动器放大器在一直启用时的理论效率提升。fR处的竖直基准线代表ADC功耗等于一直启用的驱动器放大器的功耗时的采样频率。采样速率较低时,放大器的功耗占主导,采样速率较高时,ADC的功耗占主导。基准频率(fR)将随放大器和选定ADC的功耗而变化,但基本概念依然相同。进行功耗调节的同一放大器的相对效率提升以三种不同的tON值显示。不出所料,采样速率给定时,更小的tON会产生更高的效率,并且能够以更高的采样速率运用DPS。阴影区域表明,逐渐减小tON产生的最大提升区域一般会延伸至约10个fR以下。由于采样速率会继续降至此点以下,因此可实现最大的整体功耗节约,但进一步减小tON带来的优势可以忽略不计,因为功耗逐渐接近关断或禁用状态的功耗。

要利用DPS获得最高的性能,系统时序和确定最小tON至关重要。

图3. 放大器和ADC控制信号的简化时序图

图3所示为ADC和驱动器放大器的简化时序图。图1中的系统时序功能块(FPGA、DSP和微控制器)可提供恰当的定时ADC转换开始(CNV)和放大器关断(PD)信号。SAR型ADC会在CNV的上升沿启动转换。在CNV的上升沿前,放大器在ADC采集阶段上电一段时间(tON),然后与CNV的上升沿同步关断。tON的值为多大才恰当?虽然图2说明了使用随机的tON值时的概念,但其清楚表明,DPS的全部价值将仅在使用最小tON时实现。这是放大器必须在ADC转换开始前启用以确保结果准确的最短时间。更短的时间将导致SNR或THD降低,更长的时间将不会引起任何性能提升。实际上最小tON在整个采样速率范围内并非固定,并且必须根据具体应用,用经验进行确定。最小tON因不同的放大器和系统而异。例
如,如果在图1的电路中使用ADA4805-1和AD7980的放大器/ADC组合,则最小tON会随着采样速率的增大而减小。通常,1 kSPS时需要~4 μs,而1 MSPS时则只需要~600 ns。采样速率较低时,由于处于关断状态的时间延长,因而较长的一段时间会为内部放大器节点放电提供更多的时间,因而开启时间更长。相反地,采样速率更高时,此时间段更短,因而内部放电时间更短。事实上,随着采样速率提高,有限的放大器关断时间将变得长于在关断状态消耗的时间。实际上,放大器在完成关断过程前就已经重新开启。这看起来是人为式的快速开启时间,但在性能数据未减小时却十分有效。

预测潜在功耗节省量时需要考虑的最后一点是输入信号频率的影响。迄今为止,我们已通过使用给定放大器的计算静态电流对DPS的概念进行说明。将一个信号施加在放大器输入时,也会出现随输入信号频率增大而增大的动态电流。如果输入频率足够低,影响微乎其微。随着频率增大,放大器输出端的RC网络会显示更大的负载,因而需要放大器提供更大的电流来处理此信号。

使用前面提及的ADA4805-1和AD7980并将这些概念综合在一起便可得到图4中的曲线。此图显示了进行动态功耗调节的ADC驱动器放大器相对于同样的放大器在一直启用时的功耗(用百分比表示)。我们绘制了选定输入频率下的DPS效率图,用以描述更高的输入频率对功耗的影响。我们确定了介于1 kSPS至1 MSPS之间的多个采样速率的最小tON,并将其定义为导致SINAD (信噪失真比)与一直启用的放大器相比减小不超过0.5 dB的tON。此图显示,在低采样速率下处理缓慢输入信号时,功耗节省量最高可达95%。但对更高吞吐量的系统而言更重要的是,潜在功耗节省量仍然非常高,在100 kSPS时最高可达65%,在1 MSPS时最高可达35%。必须注意,图4反映的是一个单位增益缓冲器在持续被采样的系统中的性能。但是,如之前所述,可将这些DPS概念轻松运用至基准电压源缓冲器,而且得到的结果类似。

图4. 放大器功耗与动态功耗调节的关系—试验结果

虽然DPS是一种相对较新的概念,而且需要考虑设计和时序因素,但是其初步成果非常有效。很明显,对更高性能和更低功耗的渴望将延续到未来,从而进一步增加对创意低功耗解决方案的需求。

作者简介

Bruce Petipas是ADI公司线性产品和技术部门的一位应用工程师。他从马萨诸塞大学获得电气工程学士学位后,于1999年加入ADI公司。在此期间,Bruce专攻高电流放大器的各个领域,最近,他开始致力于ADC驱动应用。

点击这里,获取更多工业自动化技术信息

围观 28
165

随着5G标准的确定以及具有5G功能的设备开始上市,我们将越来越多地感受到5G带来的影响。然而,这只是揭开了新无线技术时代的序幕。

2017年12月标志着下一代无线标准的一个重要里程碑——第一阶段5G新无线电(5G NR)标准的上半部分已经获得3GPP批准,而第一阶段5G NR的后半部分也在今年6月底定了。

随着标准的最终确定,围绕此发布标准建构的商业设备和基础设施正在进行现场试验和预发布测试。这些都意味着5G的商业推广越来越近了。

在今年2月举行的全球移动通讯大会(MWC)上,许多公司都展示了5G所承诺的高速以及虚拟现实(VR)等炫酷的应用。2018的MWC与2017年相比来说,技术的进步令人印象深刻。

5G最令人印象深刻的一个方面是它不仅仅是一个新的移动标准,而是可以围绕该标准建立涵盖广泛产的业和应用生态系统。

与以前的标准不同,5G标准有意纳入性能指针,以支持传统移动宽带场景以外的应用。

当然,有用于改进5G增强型移动宽带的性能指针,但还有一些额外的性能指针用于规范可同时连接到网络的设备数量,另外也对延迟的目标值进行了定义。

增加的设备连接将有助于大幅扩大物联网(IoT)和工业物联网(IIoT)的规模,达到当今LTE功能完全无法实现的程度。延迟规范针对的是需要确定性通讯的应用(例如涉及人类生命的任何应用)或技术将与人类实时互动的应用。虽然这三个领域的规范每一个都能够实现新的和扩展的应用场景,但将这三个领域相结合,则可围绕着5G构建丰富的应用生态系统。

下表显示了不同的应用如何利用5G的不同性能指针。

图1 5G应用和技术需求

如上所述,3GPP在去年12月和今年6月发布的标准只是第一版,未来将会有更多版本。5G将遵循与LTE类似的设计周期。过去9年来,关于LET的标准已经有多个版本,并进行了多次更新。LTE首次在3GPP Rel-8中提出。目前,3GPP正在努力完成Rel-15。Rel-15将纳入5G NR规范。2017年12月,3GPP 5G非独立组网(Non-Standalone;NSA)标准第一个版本正式冻结,完整版于今年6月冻结,不仅包括5G NR NSA,而且还纳入了独立组网Standalone;SA)标准。5G NR的NSA用例非常重要,因为它将使用LTE的核心网络进行操作。这意味着5G NR NSA的运行不需要推出和安装新的基础设施,SA版本将使用5G核心网络,并且很可能需要安装新的网络设备。在接下来的几个月中,研究人员将努力工作以最终确定5G NR SA用例的标准,一旦标准发布后,设备供货商将需要设计能够支持独立组网用例的硬件。

图2 3GPP发布时间表

对于5G来说,2018年将是令人兴奋的一年。除了3GPP Rel-15之外,消费市场还将有更多的5G部署。在MWC 2018上,华为展示了一个5G基地台,三星展示其基于28 GHz 5G NR基地台的互操作性设备测试(IODT),高通则为其基于爱立信和诺基亚基地台的28 GHz UE进行了IODT展示。这些展示表明了设备供货商的硬件几乎可以随时准备部署,高通在其网站上以粗体字强调正致力于在2019年使5G成为商业现实。

随着5G逐步得到广泛应用,围绕着5G建构的大量新技术和应用也将开始出现。5G官方规范中对于延迟和容量的独特规定,使得几年前听起来还很遥远的应用已经变得近在咫尺。VR就是一个很好的例子。如果要获得完整的VR体验,有一些重要的因素需要考虑。首先,使用者需要完整的360度高解析(HD)视图来探索虚拟世界。这意味着摄影机必须不断360度捕获HD视讯,然后将这些视讯从摄影机位置传输回蜂巢式基地台,最后传送给终端用户。5G所承诺的高数据速率可以轻松地完成此任务,并提供足够的吞吐量同时传输给多个用户。VR的另一个非常重要的方面是延迟。比如有人打开VR头盔并转过头,周围的虚拟环境也需要在1毫秒(ms)内完成转换。如果延迟大于1毫秒,则人脑会察觉到这种延迟,大多数人会出现严重的晕眩。由于5G综合改进的移动宽带速度和低于1毫秒的延迟规范,因此,VR可以透过蜂巢式网络实现。

VR已经以某种形式存在多年,但是透过蜂巢式网络实现VR的能力将使VR可能应用到新领域。VR的一个热门应用是体育赛事。想象一下,从场上某个球员的角度体验足球比赛,或者虚拟地站在球场的50分在线观看赛事将会是何种情景。今年年初的平昌奥运会上就对这一技术进行了小规模展示。100台摄影机放置在溜冰场上,直播数据实时传回到一个5G技术场馆。场馆里的人们可以佩戴VR头戴式耳机,像冰上的运动员那样体验滑冰活动。

图3 2018年冬季奥运会上英特尔展示TrueVR系统

5G能够将多达100倍以上的设备连接到网络,这一能力将使IoT和IIoT成为实现。从某种程度上说,物联网存在于当下,并且市场上不断有越来越多的设备连接到因特网。对于消费者而言,这些设备各式各样,有些具有实用性,有些纯属好玩,甚至有些非常奇怪。但对于工业而言,IIoT为智能工厂提供了许多令人兴奋的新特性和功能。制造工厂中的每台机器和设备都能够不断报告其健康统计资料和效率,因此老化的设备可以在故障发生之前进行维修,完全避免出现问题。当IIoT与增强现实(AR)、机器学习和人工智能(AI)相结合,技术人员将能够透过AR眼镜或现场平板计算机查看机器状态和信息,AI可以协助快速诊断问题。5G将有可能实现未来更快速、更经济、更安全的制造。

自动驾驶车可能是5G将推出的最热门且最受期待的应用之一。目前,车辆的自主驾驶是融合了众多传感器、照片和视讯处理而实现的。未来的自动驾驶车仍然需要配备众多传感器,并能够处理来自传感器的数据,但是车辆通讯对于自动驾驶车的大规模部署来说是不可或缺的。简言之,车辆需要一种相互沟通的方式。车辆与车辆的通讯将用于共享有关道路和环境条件的数据以及路线信息,例如预期的停车或左转。另外,车辆还将需要能够与蜂巢式基地台等多种不同类型的设备以及智慧灯柱或路标等其他智能设备进行通讯,智能灯柱或路标可以将道路状况或环境数据传输给过往车辆。

这个研究主题称为车联一切(V2X)通讯。5G延迟规范对于获取车辆信息至关重要。例如,由于通讯链路中等待处理的信息过多而导致延迟太长,使得道路出现障碍物时汽车来不及刹车,可能导致乘客受伤或死亡。因此,V2X的超可靠通讯(uRC)是必不可少的。5G提供的大数据(big data)吞吐量也将在V2X中发挥重要作用。红绿灯处的汽车可以从附近的基地台下载并上传有关其当前位置的信息。这使得汽车成为传感器数据的采集器,但是数据处理可能在基地台甚至是云端处理。随着处理技术的改进,更新的信息会推送到蜂巢式网络基础设施,旧的车辆仍然可以利用这些更新而无需更改其硬件。

虽然3GPP规范的当前版本不包括V2X的任何规范,但5G是一个不断发展的标准,而且2016年12月发布的版本只是众多版本中的第一个。图1中的时间表显示了2019年底将发布Rel-16,此版本代表了5G NR的第2阶段。目前第2阶段探索的研究项目包括用于集中回程处理的整合回程存取(IAB),旨在解决移动通讯中的未授权频谱共享挑战,以及V2X。3GPP期望在第2阶段解决这些主题和其他许多主题。虽然5G将在2018年末和2019年推出商业化产品,但5G的研究仍在进行中。

随着5G标准的巩固和具有5G功能的设备开始上市,我们将越来越多地感受到5G对全球的影响,它将成为从娱乐到智慧城市等日常生活中许多方面不可或缺的一部分。可以肯定,我们现在仅仅只是揭开了激动人心的新无线技术时代之序幕。

本文转自:5G已经到来——下一步呢?

点击这里,获取更多工业自动化技术信息

围观 19
154

Maithil Pachchigar 应用工程师 ADI公司

工业过程控制、便携式医疗设备和自动化测试设备中使用的多路复用数据采集系统(DAS)需要更高的通道密度;在这些系统中,用户希望测量多个传感器和监控器信号,并将很多输入通道扫描至单个ADC或多个ADC中。多路复用的整体优势在于每通道所需的ADC数量较少,节省了印刷电路板(PCB)空间,降低了功耗和成本。自动化测试设备和电源线路监控应用中的某些系统要求每通道使用专门的采样保持放大器和ADC,以便对输入进行同步采样,从而提升每通道的采样速率,并保留相位信息,但代价是更多的PCB面积和更高的功耗。系统设计人员根据最终应用的性能、功耗、尺寸和成本要求进行权衡取舍。它们从中选出一个转换器架构和拓扑,并使用市场上提供的分立式或集成式元件实现信号链设计。图1显示了多路复用DAS的简化框图,可进行监控并对多种传感器类型进行顺序采样。某些情况下,信号链会利用多路复用器与ADC之间的缓冲放大器或可编程增益放大器。

图1. 典型多路复用数据采集系统

当多路复用器切换通道时,在其输入端会产生小电压毛刺或反冲。该反冲与多路复用器的开启和关断时间、导通电阻以及负载电容成函数关系。具有低导通电阻的大开关通常需采用大输出电容,而每次输入端开关时,都必须将其充电至新电压。如果输出未能建立至新电压,则将产生串扰误差。因此,多路复用器带宽必须足够大,且多路复用器输入端必须使用缓冲放大器或大电容,才能建立至满量程阶跃。此外,流过导通电阻的漏电流将产生增益误差,因此这两者都应尽可能小。

SAR与Σ-Δ型ADC架构的对比

图2显示了基于电荷再分配电容数模转换器(DAC)阵列的逐次逼近型寄存器(SAR)的基本转换器架构。它在每一个转换开始的边沿上对输入信号进行一次采样,在每一个时钟边沿上进行位对比,并通过控制逻辑调节数模转换器的输出,直到该输出极为接近地匹配模拟输入。因此,它需要来自独立外部时钟的N个时钟周期,以便以迭代方式实现单次N位转换。

图2. 基本SAR ADC架构

图3显示了基本的Σ-Δ型ADC架构,它以调制器的过采样频率(KfS)对模拟输入信号连续采样,其转换输出为KfS处系列采样的加权均值。分辨率较高的Σ-Δ型ADC转换时间较长,因为需要2N次采样才能完成单次转换。

图3. 基本Σ-Δ型ADC架构

内部比较器噪声和DAC线性度决定SAR ADC转换的精度,而调制器中积分器的建立时间(开关)则决定Σ-Δ型ADC转换的精度。SARADC面临的一个挑战是,驱动器放大器需要在一次转换结束与下次转换起始之间的采集时间内建立其模拟输入端注入的开关瞬变电流。

SAR ADC的输入带宽(数十MHz)比采样频率高。所需输入信号带宽一般在数十到数百kHz内,因此,需要用抗混叠滤波器过滤掉折回目标带宽的无用混叠信号。在Σ-Δ型ADC的情况下,所需输入信号带宽通常在DC至几kHz之间,数字滤波器的输入带宽低于调制器的采样频率,因此,放宽了抗混叠要求。数字滤波器滤除目标带宽以外的噪声,抽取器则降低输出数据速率,使其回落至奈奎斯特速率。

多路复用应用面临的挑战

精密SAR ADC因为易用性、低功耗、小封装和低延迟等特点而在很多应用中广受青眯,简化了多路复用DAS的快速通道切换。

精密Σ-Δ型ADC具有卓越的带外抑制性能,而且在实现斩波功能的情况下,能抑制接近直流(50 Hz/60 Hz)的1/f噪声成分,因而广泛运用于工业应用和音频应用中。在这种情况下,ADC的采样速率是用高分辨率换来的。

SAR ADC固有异步属性,可以快速设计控制环路,转换相关的延迟或流水线延迟几乎为零,并且对接近满量程的步进输入能作出快速响应——因此,它是很多多路复用应用的普遍选择。而Σ-Δ型转换器架构一般具有单调性(这意味着它能在任意时间点转换),并采用集成式调制器来实现要求以一个全局内部或外部时钟源来同步所有内部模块的过采样和数字抽取滤波——结果导致非零周期延迟或建立时间问题。有些系统也依赖于统一的多通道数字化过程,其低延迟使采用SAR ADC的通道切换更方便快速。除了数字滤波器的延迟(群延迟),Σ-Δ型ADC还常用于多种类型的传感器多路复用——比如温度、压力或称重传感器——从而以较低的输出数据速率获取小电压变化,比如过程控制。这主要是因为它具有较高的分辨率、精度、噪声和动态范围性能,而SAR ADC通常要求每个通道配备低通滤波器或进行缓冲,结果会在空间和成本方面使问题复杂化。

某些精密SAR ADC较高的吞吐速率允许在数字化处理中以较高的扫描速率对多个通道进行多路复用,因而所需的ADC数量较低,节省了PCB面积和成本。精密Σ-Δ型ADC可以进行多路复用的输出数据速率受限于数字滤波器类型的建立时间,这就限制了其为多路复用器通道建立快速满量程瞬态的能力。建立时间还会因所使用的数字滤波器类型而不同。用户必须等到数字滤波器的建立时间完全结束,才能取得有效的转换结果,然后才能切换到下一个通道。某些内置sinc (sinx/x)数字滤波器的Σ-Δ型ADC允许在单个周期内完成建立或零延迟,方法是屏蔽内部数字滤波器结果,同时在第一个转换周期内、或在开始新的采样周期前输出完全建立的数据结果。这些ADC的输出数据速率始终低于其完全建立的延迟时间过后的速率。

两类精密ADC在多路复用应用中面临的共同问题是带宽、建立时间和输入范围要求。在一个多路复用DAS中,当输入通道切换到下一通道时,一个重大难题是ADC必须支持大电压幅度步进的变化和快速转换(哪怕是直流信号),因为输入步进可能从负满量程电压(有时候是接地)转换为正满量程电压,反之亦然。换言之,两个输入通道之间会在很短的时间内产生大电压步进,并且ADC输入必须要能够建立这个大电压步进。这为ADC驱动器带来了额外负担,而且在这种情况下,ADC驱动器的大信号带宽性能成为了选择ADC驱动器的关键规格。在大幅度步进的情况下,非线性效应显现,并且压摆率和输出电流特性会限制ADC驱动器的性能和输出响应。多路复用器通道开关必须与ADC转换引脚同步,并且在启动转换之后应当等待一段较短的开关延迟(几十ns),然后再切换到下一通道,这样可以有充分的时间建立所选通道。为了保证最大吞吐速率时的性能,多路复用系统的所有元件都必须在多路复用器切换与下一次转换开始之间的时间里在ADC输入端完成建立。

集成式和分立式多路复用精密DAS解决方案如今,市场上有集成式和分立式两类多路复用应用解决方案,具体取决于客户的需求。分立式多路复用解决方案的优势是,在基于性能求选择合适的信号调理组件时具有较大的灵活性。

用户仍然需要面临与通道切换、时序和建立时间相关的复杂设计问题。我们也可以认为,如果用户可以切换多路复用器输入通道,进行外部校准以排除误差,灵活性仍然存在,但是,结果很可能会增加电路板尺寸和成本,牺牲性能和灵活性。有些客户也会出于灵活性考虑,偏好自行对FPGA实施定制数字滤波,而不采用片内集成的滤波器。

如果客户使用集成式多路复用解决方案,则无需担心通道切换、时序和建立时间问题。另外,这种方式可以提供独立通道配置,而且带有不同的输入范围和误差校准选项。这种情况下,客户在信号调理方面的灵活性较低,但该方式可以简化设计,节省面积和物料成本,同时还具有充足的性能。当今市场上现有的部分高度集成式SAR和Σ-Δ型ADC可以克服在设计精密DAS时面对的诸多挑战。这些IC消除了对输入信号进行缓冲、电平转换、放大、衰减或以其他方式调理的必要性。它们还消除了共模抑制、噪声、通道切换、时序和建立时间等方面的担忧。

选择SAR或Σ-Δ型转换器架构时,系统设计人员应当根据多路复用数据采集系统的性能、功耗、尺寸和成本要求考虑本文中的设计优缺点。

作者简介

Maithil Pachchigar [maithil.pachchigar@analog.com] 是ADI公司麻萨诸塞州威明顿市仪器仪表、航空航天与国防业务部门的应用工程师。他于2010年加入ADI公司,致力于仪器仪表、工业、医疗保健和能源行业的精密ADC产品系列工作和客户支持。自2005年以来,Maithil一直在半导体行业工作,并已发表多篇技术文章。他于2006年获得圣何塞州立大学电气工程硕士学位,并于2010年获得硅谷大学MBA学位。

点击这里,获取更多工业自动化技术信息

围观 25
196

物流机器人是指应用于仓库、分拣中心、以及运输途中等场景的,进行货物转移、搬运等操作的机器人。近年来,机器人产业发展已成为智能制造中重要的一个方向。为了扶持机器人产业发展,国家陆续出台多项政策。其中,物流机器人大大受益其中。

随着物流市场的快速发展,物流机器人的应用加速普及。在不同的应用场景下,物流机器人可以分为AGV机器人、码垛机器人、分拣机器人。

AGV机器人

据统计数据显示,2017年物流机器人销量约为1.3万台,其中AGV机器人增长迅速。

AGV机器人是指一种高性能的移动运输职能设备,主要用于货运的搬运和移动。目前广泛应用在工厂内部工序间的搬运环节、制造系统和物流系统连续的运转以及国际化大型港口的集装箱自动搬运等。

随着工业机器人应用场景的不断拓展,在国内工业机器人需求量激增以及“中国制造2025”、智慧物流等一系列政策的推动下,AGV机器人销售量将持续增长。据数据显示,2017年中国AGV销量达到1.35万台,与2016年的0.67万台同比增长101.6%,随着AGV在其他领域的渗透,预计2018年中国AGV销量将达到1.89万台。

码垛机器人

码垛机器人主要用于用于纸箱、袋装、罐装、箱体、瓶装等各种形状的包装物品码垛/拆垛作业,包括直角坐标式机器人、关节式机器人和极坐标式机器人。

码垛机器人常用于仓储、码头、工厂等场所。据数据显示,2017年码垛机器人销量约为4.3万台,同比增长33%。未来,智能仓储的建立及智慧工厂的发展将带来码垛机器人的大规模应用,预计2020年市场销量将超10万台。

市场规模方面,2017年码垛机器人市场规模约为81亿元,同比增长29%。未来,受利好政策推动、物流行业快速发展等因素影响,码垛机器人市场规模将进一步扩大,预计到2020年有望超165亿元。

分拣机器人

分拣机器人主要用于货物分拣,通过传感器、物镜、图象识别系统和多功能机械手等设备,根据图象识别系统识别物品形状,机械手抓取物品,放到指定位置,通过这些设备实现货物快速分拣。

目前,亚马逊、京东、阿里等电商平台已投入使用。而拥有巨大快递量需要处理申通、顺丰等快递企业也利用分拣机器人以提高效率。

物流机器人行业发展趋势:

1、政策扶持行业发展

“智能制造”作为中国制造的一个重要发展方向,得到政策的大力支持。其中,工业机器人尤其受到重视。工业机器人产业的利好政策为物流机器人的发展提供良好的政策环境。

2、物流市场带来需求

我国的物流运输市场正快速发展中。未来,货运量、快递量还将继续提高,随之而来的是对物流机器人的需求。

3、电商、物流等企业入局

使用机器人降低人工成本已成为一种趋势,尤其在电商、物流等需要大量处理货物的企业。未来,将有越来越多电商、物流企业投入研发、配置物流机器人,以产品、系统等形式进入市场。

4、标准体系更完善行业技术升级

目前,物流机器人处于发展阶段,现有的产品可以适用于基本的应用场景。随着标准体系的升级、完善,未来行业技术将升级,产品将更智能化,与AI的融合成度加深。

本文转自:市场拓展增速,中国物流机器人将走向何方?

点击这里,获取更多工业自动化技术信息

围观 16
190

作者:Bob Clarke,系统应用工程经理;Kevin Kreitzer, 现场应用经理,ADI公司

一般认为是德克萨斯州加兰的E-Systems(现Raytheon)公司在1984年构建了第一台软件定义的基带接收器,而第一台软件定义的基带收发器可能是WSC-3(v)9,由E Systems加利福尼亚州佛罗里达圣彼得堡分部在1987年为Patrick AFB设计的。1989年,Haseltine和Motorola c.又为Rome AFB开发出了更新的无线电产品 Speakeasy。现代的示例包括卫星和地面无线电、军事联合战术无线电系统(JTRS)以及几乎任何蜂窝或陆地移动无线电终端或基站。

从理论上来说,要使数字转换和信号处理正常工作,我们应该具有线性时不变系统,但实践告诉我们,将一系列模拟器件连在一起后就没有这么理想了。不过,通过精心挑选元件和分布增益,您可以在保持灵敏度的同时最大程度地扩大SDR的动态范围。而且,无论SDR是通信接收器基站还是信号分析仪,都适用相同的规则。

在一些标准通信系统(例如,蜂窝系统)中,SDR在受控环境中工作,也就是说,标准阐明了针对接收器和发射器的要求,而载波则为标准增加了裕量。在其他一些系统(如军事、业余和陆地移动无线电)中,环境不受控制,也就是说,最近的发射极可能就在隔壁,最远的可能刚好在视距的耳语范围内。

详文请阅:最大程度地扩大软件定义无线电的动态范围

点击这里,获取更多工业自动化技术信息

围观 25
188

Ken Waurin 营销经理 Analog Devices, Inc.

汽车制造商致力于使其下一代汽车比以前更安全、更智能且更节油。为此,需要在汽车中部署更多的ECU(电子控制单元),以实现智能无线电连接、路噪主动降噪(RNC)、个人音区分区(PAZ)、车内通信(ICC)和自动驾驶等新特性和功能,这会导致电子系统的数量不断增加,也越来越复杂路噪主动降噪。随着ECU数量的不断增加,连接各种ECU所需的电缆的重量和成本也随之增加。增加的重量会反过来降低汽车的燃油效率,这一点让汽车制造商很苦恼。

汽车制造商必须在提供先进、功能丰富的信息娱乐系统和符合政府发布的燃油效率标准之间取得平衡。减轻现有电缆的重量可大幅提高燃油效率。

现状

传统的汽车音频ECU一般通过单独的模拟电缆或现有的数字总线架构来连接,这两者都存在局限性、低效率、及不必要的费用等。使用模拟传输线的汽车音频系统需要专用且昂贵的屏蔽电缆,来传输多通道音频信号。在如今支持多通道(5.1或7.1)Dolby或DTS解码的高级 音响系统中,所需电缆的数量迅速增加。而且,额外的模数转换器(ADC)和数模转换器(DAC)不仅会增加系统总成本,而且还可能使某些音频性能下降。

当代信息娱乐系统中已经广泛采用MOST®或以太网EAVB等数字总线标准,这是因为这些标准能够大幅简化模拟实施方案的连接复杂性。然而,MOST和以太网EAVB虽然能够提高性能和灵活性,

但需要加入高价格的微控制器来实施相关软件协议栈,从而增加系统成本。此外,这些数字总线架构本身对节点之间的延迟存在着不确定性。对于ANC/RNC和ICC等易受延迟影响的应用,现有的数字总线架构存在的根本缺陷是不能被接受的。

汽车音频总线简介

汽车音频总线™(或A2B™)是ADI公司的一项创新的、为应用而生的技术。事实证明,该技术最多能够将整体电缆重量减轻75%,而且还能提供高保真的数字音频。汽车音频总线(A2B)针对音频应用进行优化,相比模拟音频总线能够提供出色的音频质量,而且其系统总成本远低于现有的数字总线标准。简单来说,A2B是一种高带宽(50 Mbps)数字总线,它能够在非常长的距离上(节点间的距离最长达15 m,整个菊花链长度超过40 m),使用一条非屏蔽双绞线将I2S音频、I2C控制数据、时钟、和供电一起传输。
汽车音频总线基本特性:

AD2427W和AD2426W一起,组成了最新的增强型A2B收发器系列,且引脚兼容。这种最新型的产品支持采用单主机的菊花链,以及最多10个从机节点,与第一代A2B产品相比,其性能提升了20%(参见图1)。借助这种菊花链能力,A2B总线距离最长可达40 m,单个节点之间的最长距离可达15 m。用串行拓扑结构代替环形拓扑结构是A2B技术中一个重要的元素,对整体系统完整性和稳定性至关重要。如果A2B菊花链的一个节点受到影响,整个网络不会崩溃。只有故障节点下游的节点会受影响。而A2B技术特有的内嵌诊断功能能够判断故障的来源和起因,发出中断信号,并启动保护措施。

图1.A2B汽车音频总线功能框图。

与现有的数字总线架构相比,A2B主从线拓扑结构本身更为高效。启动简单的总线初始化流程之后,无需更多处理器干预,总线即可常规运行。A2B的独特架构带来的一个附加优点是,系统延迟是确定的(2个时钟周期的延迟),并且延迟与音频节点在A2B总线上的位置无关。此特性对ANC/RNC和ICC等语音和音频应用极其重要,在这些应用中,必须以时序一致的方式处理多个远程传感器的音频样本。
AD2428W、AD2427W和AD2426W A2B收发器可在一条非屏蔽双绞线上传输音频、控制、时钟和供电信号。这可降低系统总成本,原因如下。

* 与传统实施方案相比,减少了物理线缆的数量。
* 实际采用的线缆可以是成本更低、重量更轻的非屏蔽双绞线,而非更昂贵的屏蔽电缆。
* 最重要的是,对于特定的应用场景,A2B技术可提供小功率的供电,将不超过300 mA的电流传输至A2B菊花链上的音频节点。有了这个小功率供电传输,便无需在音频ECU上使用本地电源,从而进一步降低系统成本。

A2B技术提供的50 Mbps总线带宽最多可支持32个使用标准音频采样速率(44.1 kHz、48 kHZ)和位宽(12位、16位、24位)的上行和下行音频通道。这可为多种音频I/O设备提供相当大的灵活性和连接性。在音频ECU之间维持全数字音频信号链可保证最高质量的音频品质,不会因ADC/DAC转换造成音频性能下降。

如前所述,系统级诊断功能是A2B技术的一个重要元素。在所有A2B节点上,都能够判断多种故障状况,包括开路、电线短路、电线反接、电线短路至电源或地。从系统完整性角度看,该功能非常重要,因为在出现开路、电线短路或电线反接等故障时,故障点上游的A2B节点仍然能够正常工作。诊断功能还提供高效隔离系统级故障的能力,从汽车经销商/安装人员的角度来看,这一点至关重要。

使用SigmaStudio™图形化开发环境(与支持ADI公司SigmaDSP®和SHARC®处理器系列的开发工具相同)可大幅简化采用A2B的系统的设计过程。SigmaStudio通过业界领先的工具链,初始化A2B网络,并配置所有寄存器。SigmaStudio环境中还包含A2B总线带宽计算器和误码率测试器(BERT)。ADI还提供众多的全功能评估套件,可快速完成实际A2B网络的原型设计,从而加快系统方案早期验证和测试、验证和调试过程。

目标市场与应用

众多成熟和新兴的市场应用将因A2B技术而受益。目标应用包括:

* 音频ECU(车载音响主机、高级音频功放)连接
* 用于免提通话/语音识别/车内通信的麦克风阵列
* 主动降噪、路噪主动降噪
* 个人音区分区/有源扬声器
* eCall和远程信息处理系统、 自动驾驶系统、自动停车系统
* 生命体征监测
* 智能无线电连接

音频ECU连接是一个成熟的、具有吸引力的应用领域。众多量产汽车中已部署采用A2B。在音响主机连接至高级音频功放的简单例子中(参见图2),A2B无需使用多条线缆来连接多通道音频、导航、手机和提示音。A2B可将所有相关线缆替换为低成本的非屏蔽双绞线,这种通过A2B进行的连接方式已经过测试和验证,符合最严格的汽车EMC和EMI兼容性要求。

图2.车内的A2B汽车音频总线示例。

高效经济的麦克风连接是设计中的优先考虑因素,促成了多种使用案例和应用。蓝牙®连接性和免提/语音识别系统已成为标准配置,在某些地区紧急呼叫eCall系统已成为强制要求。从车厂的角度来看,趋势是向单独或以模块为单位进行装配的多麦克风(2至4个)系统发展。无论何种情况,采用A2B技术的系统总成本远低于模拟连接产生的成本,在多麦克风阵列中尤为如此。所有A2B收发器均支持多达四个PDM麦克风接入,从而在四个麦克风阵列中,节省了传统连接方式中的三根麦克风线。

路噪主动降噪是更加广泛的ANC应用领域的衍生产品,许多汽车制造商正在评估这项应用。在宽带ANC中,可抵消与参考输入谐波相关的声音,以及部分非谐波相关或随机的声音。这些参考输入一般通过实体分布在车身周边的加速度传感器提供,最常见于四个悬挂中。宽带ANC系统的其他输入可来自error麦克风——也分布于汽车内部,比如在每个需要产生安静区的乘客位置布置一个。从每个加速度计/麦克风到宽带ANC处理单元的连接,传统实施方案采用模拟连接。显然,其接线成本、复杂性均过高,处理单元上的连接器区域也需要很大。而这些问题均可通过A2B方案解决。

对于需要经济高效的传感器连接的新兴应用,A2B也可以被视为一项具有推动作用的技术。自动驾驶、生命体征监测和自动停车系统等应用预计于2020年开始量产,都能从A2B技术提供的特性、功能、便捷性和快速上市等优势中获益。

总结

A2B是一种数字总线架构,能够为接线集中的音频和控制应用提供一系列优化,还能提高系统性能和降低系统成本。

* A2B提供远高于模拟连接的音频质量,同时还能提供低成本、可扩展的数字总线架构。
* A2B可在各种汽车应用中提供低风险解决方案。
* 从2016年开始,基于A2B的系统已进入部署阶段,目前交付的系统数量已超过200万套。
* AD2428W以及功能精简、低成本的衍生产品AD2427W和AD2426W,代表了功能增强型A2B收发器的最新发展即按照既定的发展规划,致力于实现更高集成度和性能。

作者简介

Ken Waurin是ADI公司的战略营销经理,负责汽车信息娱乐系统相关工作。他的主要关注点是高级音响、主动降噪和车内连接。联系方式:kenneth.waurin@analog.com

点击这里,获取更多IOT物联网设计信息

围观 26
165

页面

订阅 RSS - ADI