ADI

自从第一台IoT设备于1990年问世以来,物联网已经有了长足的发展,这是一种可以在互联网上开启和关闭的烤面包机。27年之后,联网设备已经从新奇产品变成了日常生活中必不可少的一部分。

最近的预估显示,成年人平均每天花在智能手机上的时间超过4个小时,智能手机也是一种装有物联网传感器数据的设备。

目前,81%的成年人拥有智能手机。想象一下,当81%的成年人拥有智能汽车和智能家居时,我们将会收到多少数据。

今天,IoT设备的大部分数据都在云中处理,这意味着全球所有角落产生的数据都被集中发送到数据中心的少数计算机上。然而,随着IoT设备的数量预计将在2020年猛增至200亿,通过互联网发送数据的体积和速度对云计算方法提出了严峻的挑战。

越来越多的设备连接将迫使IoT制造商在2018年将云计算模式从云计算模式转移到一种称为“雾计算”的新模式。

1、数据访问增多,云计算问题明显

物联网和人工智能的发展将带来价值数以亿计的数据。分布广泛的传感器、智能终端等每时每刻都在产生大量的数据。尽管云计算拥有“无限”的计算和存储资源池,但云数据中心往往是集中化的且距离终端设备较远,当面对大量的分布广泛的终端设备及所采集的海量数据时,云不可避免地遇到了三大难题:

网络拥塞,如果大量的物联网和人工智能应用部署在云中,将会有海量的原始数据不间断地涌入核心网络,造成核心网络拥塞;

高延迟,终端设备与云数据中心的较远距离将导致较高的网络延迟,而对实时性要求高的应用则难以满足需求;

可靠性无法保证,对可靠性和安全性要求较高的应用,由于从终端到云平台的距离远,通信通路长,因而风险大,云中备份的成本也高。

因此,为满足物联网和人工智能等应用的需求,作为云计算的延伸扩展,雾计算(Fog Computing)的概念应运而生。雾计算最早由思科提出,它是一种分布式的计算模型,作为云数据中心和物联网设备 / 传感器之间的中间层,它提供计算、网络和存储设备,让基于云的服务可以离物联网设备和传感器更近。

雾计算主要使用边缘网络中的设备,可以是传统网络设备,如网络中的路由器、交换机、网关等,也可以是专门部署的本地服务器。这些设备的资源能力都远小于一个数据中心,但是它们庞大的数量可以弥补单一设备资源的不足。

在物联网中,雾可以过滤、聚合用户消息,匿名处理用户数据以保证隐秘性,初步处理数据以便实时决策,提供临时存储以提升用户体验,而云则可以负责大运算量或长期存储任务,与雾计算优势互补。

通过雾计算,可以将一些并不需要放到云上的数据在网络边缘层直接进行处理和存储,提高数据分析处理的效率,降低时延,减少网络传输压力,提升安全性。

雾计算以其广泛的地理分布、带有大量网络节点的大规模传感器网络、支持高移动性和实时互动以及多样化的软硬件设备和云在线分析等特点,迅速被物联网和人工智能应用领域的企业所接受并获得广泛应用,例如,M2M、人机协同、智能电网、智能交通、智能家居、智能医疗、无人驾驶等应用。

与边缘计算(Edge Computing)不同的是,雾计算可以将基于云的服务 , 如 IaaS、 PaaS、 SaaS,拓展到网络边缘,而边缘计算更多地专注于终端设备端。雾计算可以进行边缘计算,但除了边缘网络,雾计算也可以拓展到核心网络,也就是边缘和核心网络的组件都可以作为雾计算的基础设施。

2、“云”和“雾”典型案例和应用场景

融合云平台和雾计算,一方面可通过云降低传统 IT采购、管理和运维的开支,将 IaaS、 PaaS、 SaaS作为云服务输出;另一方面,通过雾计算可保证边缘端数据的实时搜集、提取和分析速度,提高网络资源部署使用和管理效率,有助于提高人机协同效率,为企业业务创新、服务品质提升提供技术支持。以下是四个行业“云”和“雾”的典型案例和应用场景。

工业

GE基于 Pivotal Cloud Foundry打造了 Predix 物联网 PaaS平台,结合戴尔智能仿真技术,实现了“数据双胞胎”。基于云计算,GE 实现了飞机发动机生产过程中的调优,同时,基于雾计算,GE 实现了飞机飞行过程中的“自愈”。

GE Predix 作为物联网 PaaS 平台,还助力制造企业将大数据、物联网和人工智能转化为智能制造能力,实现数据创新。GE Predix 平台,融合云计算和雾计算以及“数字双胞胎”,帮助制造企业实现“虚拟 - 现实”的设计生产融合,并为其提供云计算服务。

农业

Chitale Dairy是一家乳制品厂。基于戴尔科技虚拟化技术,Chitale Dairy实现了 ERP云部署。他们基于雾计算,通过为奶牛装上传感器,进行近实时数据采集分析、处理,实现精细化运营,保证乳制品生产全流程的监控、管理、优化。同时,Chitale Dairy 通过基于云的乳业生命周期管理平台,实现了乳制品生产流程自动化管理,通过物联网和大数据分析,对每头奶牛从食料、喂养、健康、牛奶质量和产量进行全流程监控分析,实现精细化和自动化乳业生产。

将云的整体业务管理和雾端的优化农场间协作以及奶源监控管理紧密连接起来,在提高乳制品生命周期管理效率的同时,提升了协同和协作效率,加速企业业务创新的速度。

服务业

TopGolf 是一家高尔夫俱乐部。通过采用戴尔科技的虚拟化和超融合技术,形成了高尔夫数字化高端服务输出能力。他们通过向数字化转型,打破了传统高尔夫的业务模式。通过物联网,将 RFID 芯片嵌入高尔夫球里,实现对每次击球、每个队员和赛事进行实时监控,并基于雾计算,实时跟踪和分析每个击球动作和球的路径,实现实时积分。

TopGolf 的业务模式融合了云计算和雾计算,实现了跨数据中心、云和边缘应用的实时数据监控、交互和管理,满足赛事实时监控、场上场下互动、赛前球员积分分析、社交媒体、会员个性化数据管理等大数据分析的需求。

交通业

在智能交通中,可通过传感器搜集信息,进行实时数据分析和交通部署,以提高公共安全。通过雾计算,智能交通控制系统中的一个雾节点可以共享收集到的交通信息,以缓解高峰时段的交通拥堵、定位交通事故,并可以通过远程控制缓解交通拥堵区域的交通状况。同时,在每个用户的电话和公共交通中,基于雾计算的应用程序允许用户在没有持续网络连接的情况下,共享并通过附近的用户下载内容。

此外,自动化车辆的安全系统、道路上的监控系统以及公共交通的票务系统,都可以从传感器和视频数据中收集大量信息。聚合后的数据将传输到云上,根据用户的需求进行数据提取和分析,再基于雾计算实现边缘数据实时分析,从而为用户快速提供精准信息,以保障公共交通的畅通和安全。

3、未来雾计算将扮演重大角色

从商业运营模式到工作生活方式,智能物联网技术正深刻改变着人类社会。要让物联网拥有无处不在的智能,就必须充分利用网络环境中分散存在的计算、存储、通信和控制等能力,通过资源共享机制和协同服务架构来有效提升生产效率或用户体验。

当前,雾计算技术的研究和标准化工作刚刚起步。我们面临的主要技术挑战和研究热点为:如何在雾计算节点之间建立信任关系,如何在它们之间推动资源充分共享,如何在云—雾—边缘等多层次之间实现高效通信和紧密协作,如何在异构节点之间完成复杂任务的公平按需分配等。

可以预见,随着雾计算技术的不断发展成熟和普及应用,智能物联网将越来越便捷、越来越真实地借鉴和映射人类社会的组织架构和决策机制,从而能用更自然和更熟悉的方式为每个人提供触手可及、无处不在的智能服务。

本文转自:物联网设备爆发式增长,云计算模式正走向“雾计算”

点击这里,获取更多IOT物联网设计信息

围观 8
60

现代电机不再是只是简单执行任务的单独的零件,而是成为一个全面性的系统,可以说现代电机是整个机电体系的神经中枢。现代电机可以为整个机电体系提供能源,也就是说现代电机是动力中心;现代电机也可以起到调节、平衡、控制整个机电系统的作用。甚至很多现代电机兼具这两种功能。如此强大且全面的功能必然对现代电机提出更高要求,这些要求不仅仅体现在现代电机本身的设计和生产,而且体现在现代电机生产出的产品的经济性、应用性和发展性。

现代电机的六大发展方向

1、从有刷到无刷的转变

在过去,传统的直流电动机的使用覆盖率非常高,主要是因为绝大多数的电力供给都是直流电。而传统的直流电动机都是有刷的。有刷电机指的是靠换向器和电刷的配合来自动完成的电机,换向器和电刷装在电机内部。虽然有刷电机在制作方面技术纯熟,相应的配件也比较便宜,但是有刷电机存在着很多缺点。比如,更换配件程序麻烦、配件使用寿命短、发热率高、换向火花大、损耗严重、电磁干扰严重等。所以,尽管有刷电机存在很多优点,但是它还是随着时代的变化逐渐被无刷电机所取代。无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。无刷电机的种类很广泛,并且几乎不存在有刷电机的所有缺点,无刷电机磨损小、噪音低、干扰低,可以说无刷电机相对于有刷电机具有很大的优势。

2、现代电机的直接驱动

现代电机通常都是高速运转的,它的运转速度每分钟能够达到数百甚至数千转, 这样高的运转速度要进行高低速的变换是相对困难的,但是很多应用场合恰恰就有这样的需求。因此,就需要现代电机为其提供转换转速的配件系统。但是这样的转换系统必然会增加整个电机系统的大小,并且也会影响到设备的精确度和工作效率。这时候,只有使现代电机驱动向直接驱动发展,才能有效的解决这一问题。

3、电机的极速化

现代工业的发展经常需要电机的极速化,即经常需要电机保持极高或者极低的速度。现代电机要极速化的要求与电机的直驱化紧密相关。电机的极速化,不仅有助于实现电机的直驱化,而且可以提高电机的工作效率和设备的精确度。

4、从匀速到调速的转变

传统的电机基本维持一个速度,大部分的电机也只有开关机器的这一个开关。但是在实际的运用中又需要对电机的速度进行调节,而在这一过程中,频繁的开关对电机不可避免的造成了电机的内部零件的磨损,对控制器和电网也会造成一定的冲击。因此,调速功能的运用对于整个电机系统起着至关重要的作用。例如,现代的变频空调就是采取了调速的方式。这种方式使得它的舒适度比传统的空调要好得多,而且这种调速系统使得电机的工作效率更高,也就更加省电。

5、从大型化到小型化、微型化的转变

现代工业越来越需要电机的小型化和微型化,尤其是便携式的产品更是对电机的大小提出更高的要求。比如从第一代电子计算机到台式电脑再到笔记本电脑再到 iPad、手机的转变都体现了人们对于电机的小型化和微型化的需求。但是要达到电机从大型化到小型化的转变,首先要提高基础配件的功率,并且保证基础元件的性能和改善电机运行的原理。

6、智能化

当今社会,电子信息技术日新月异,智能化系统渗透到我们生活的方方面面。现代电机不仅为整个机电系统提供动力,而且对于电机系统有平衡、调节等功能,而当今社会越来越要求现代电机拥有自我适应、自我更新等功能,形成具有针对不同任务的个性化服务。而这就是智能化融入到现代电子系统的体现。而现代电机的智能化也需要各种电子理论、智能传感器、高性能材料等的综合运用。

现代电机的关键技术

1、仿真技术和设计技术

仿真技术和设计技术的突破电机是一项综合技术的产物,它是温度、磁场、电力、机器相互交叉融合的产物。它们相辅相成,并相互影响。例如,温度升高或者降低都会影响磁性材料电磁的大小和磁场的位置,而这样又会影响到电机的工作效率与耗能的多少,从而也会直接影响电机内部零件的磨损程度,而磨损程度的变化对电机本身的温度又产生一定的影响。因此,现代电机中的每一个环节都是不能忽视的,任何一个环节出现差错都会牵一发而动全身。所以,具有综合性的仿真技术和设计技术就显得尤为重要。

2、高效节能技术

高效节能技术是一个经久不变的话题,高效节能也就意味着电机工作效率的提升。而电机正是由于是整个机电系统中耗电量最大的部分,所以对于它的工作效率的提升就显得更为重要。首先,要从电机的体积入手,体积小的电机效率远远高于大体积电机;其次,要不断更新电机原件的材料,使电机在工作过程中自身对于电能的消耗降到最低。

3、极端环境的适应能力

极端环境的适应能力现代电机涉及的领域越来越多,而传统的电机存在温度限制,这使得电机在特定的环境中失去动力。因此,如果要现代电机能够在更广泛的领域发展,就必须提高它在极端环境的中的适应能力。

综上所述,无刷化、直驱化、极速化、调速化、微型化、伺服化、机电一体化以及智能化是现代电机未来的发展方向和发展重点。它们中的每一点都是在日常的生产生活中不断实践,反复论证出来的。因此,无论是无刷化、直驱化还是机电一体化、智能化都是未来现代电机发展不可或缺的重要元素之一。而在现代电机的未来发展过程中,也要着重注意它的仿真技术、设计技术、高效节能技术以及对极端环境的适应能力,从而使现代电子技术得到更加良性的发展。

本文转自:六大发展方向,三大关键技术,现代电机的前景在这里!

点击这里,获取更多电机控制设计信息

围观 33
85

为更好的推动汽车产业健康发展、促进汽车电子技术创新,以智能汽车“芯”趋势为主题的『第六届汽车电子创新国际论坛』于昨天在上海长荣桂冠酒店拉开序幕。ADI 大中华区汽车电子市场经理崔正昊出席了此次论坛,并为与会者带来主题为『ADI 汽车电子产品最新动态』的演讲。

作为世界领先的汽车半导体芯片供应商,ADI近年来通过多起成功的并购在汽车电子领域强势布局,扩充核心技术,并在系统和平台的维度强化完整方案提供优势,特别是对讯泰(射频微波)、凌力尔特(电源管理)、Vescent(激光雷达)多家具有显著技术优势的业界先进企业的整合,实现了针对汽车安全、信息娱乐及动力总成等领域完美补强,帮助客户解决汽车设计制造过程中的难点和痛处,并与他们一起规划未来的汽车,切实践行“超越一切可能”及让未来的汽车更加美好。

在本次论坛中,崔正昊告诉了我们如何使汽车更安全,更环保,更智能!

安全领域

ADI 在汽车安全领域的应用主要包括预测、主动和被动防护三方面。ADI在ADAS领域已经有多年的经验,从最早的后视、夜视系统到视觉ADAS处理器,到完整的24GHz/7xGHz毫米波雷达信号链、激光雷达(LIDAR)、Drive360™ 技术平台,ADI 用丰富的设计经验努力打造提供更安全的驾驶体验。

此外,得益于完整的 MEMS 产品线,ADI 还将优秀的陀螺仪及 low-g 加速度计应用于车身稳定系统等主动防护产品中、陀螺仪及 high-g 加速度计应用于安全气囊等相关产品中,以及高可靠性的 IMU 应用于自动驾驶的对精准地理定位的需求中。毫米波雷达Radar+LiDAR+IMU 的完美组合,ADI 正在打造未来自动驾驶的安全技术图谱。

ADI 汽车安全领域技术

动力总成领域(环保)

ADI 在动力总成领域的产品主要包含三方面的应用——

* 电池管理,包括传统铅酸电池和锂离子电池的高精度管理(ADuCM3xx)与检测(AD728x,LTC68xx),ADI 的电池检测芯片占据着这一领域的绝对份额。

* 高电压系统隔离,ADI 的完整隔离产品线,包括BMS、逆变器、DC-DC、充电隔离,这些在汽车电池包应用中都非常重要。

ADI 车用能源管理产品

* 高精度马达控制检测,ADI 与国际领先的磁阻供应商合作,将自身擅长的信号调理、接口等模拟器件技术与磁阻产品相结合,推出了业界领先、高性价比的用于检测速度、角度的AMR解决方案,可广泛应用于低功率电机产品中。

座舱电子领域(智能)

座舱电子解决方案主要包括主机、音频功放、音频总线等。作为领先的高性能信号处理企业之一,基于多年的汽车电子经验, ADI 提供众多通过汽车应用认证的信息娱乐系统产品以及提供广泛的视频解码转换器/编码转换器/协处理器,它们的信号性能和功能表现卓越,同时还可以提供完善的低功耗型 LVDS/HDMI/MHL/APIX2 接口器件。

ADI 汽车驾驶舱电子策略

独特的连接总线技术

ADI 提供的音频总线 - Automotive Audio Bus(A2B),主要用于主机、功放、ANC BOX、TBOX、麦克风/麦克风阵列等模块间的连接,可用一对双绞线同时传输音频、控制信号,还可以提供电源,大大节省了线材成本,降低了车身重量,且利于音频系统的平台化开发,已经在国内外多家车厂实现量产。

音频总线A2B

丰富的语音预处理技术

语音预处理 DSP, 配合 A2B 总线,通过 Beam Forming,回声消除,降噪等算法,实现车内语音预处理,提高语音识别质量,完成座舱内多音区语音识别,车内通话,多音区电话会议等功能。

语音处理技术

专用的车载视频和摄像头总线技术

ADI 专用汽车相机链路技术 C2B(汽车摄像头总线),可在最低成本基础设施中提供低延迟高清质量视频。 C2B 使用经验证的低成本 UTP 线缆进行高清视频传输,为车载相机应用奠定基础。 当然,C2B 除了摄像头,也可以单纯做视频总线传送到显示器上哦~

视频总线 C2B

ADI 作为一家具有 50 多年历史的半导体厂商,针对让汽车更加安全、环保和智能三方面,推出了很多具有竞争力的芯片产品。同时还与友商及第三方开展合作,在芯片的基础上提供完善的参考设计,帮助客户将产品更快地推向市场。ADI 对中国汽车电子市场一向十分重视,有完善的技术及商务同事服务于广大客户,我们希望在汽车智能化的趋势下,利用高性能、高质量的产品,灵活的合作模式和完善的服务,抓住机遇,与客户共同成长发展。

围观 10
73

作者:Tony Armstrong和Samuel Nork

由串联连接、高能量密度、高峰值功率的锂聚合物或磷酸铁锂(LiFePO4)电池单元组成的大电池包,广泛用于从纯电动车辆(EV或BEV)、油电混合动力车辆(HEV)、插电式混合动力车辆(PHEV)到能源存储系统(ESS)的各类应用中。特别是电动汽车市场,预计会对大型串联/并联电池单元阵列产生巨大需求。2016年全球PHEV汽车销量为77.5万辆,预计2017年销量为113万辆。尽管对大容量电池单元的需求不断增长,电池价格仍然相当高,构成EV或PHEV中价格最高的组件,支持续航小几百公里的电池价格通常在10,000美元左右。高成本可以通过使用低成本/翻新的电池单元来化解,但此类电池单元也将具有更大的容量不匹配性,进而减少单次充电后的可用运行时间或可行驶距离。即便是较高成本、较高质量的电池单元,重复使用后也会老化且不匹配。提高具有不匹配电池单元的电池包容量有两种办法:一种是从一开始就使用更大的电池,但这样做的性价比不高;另一种是使用主动均衡,这是一种新技术,可以恢复电池包中的电池容量,快速增强动力。

全串联电池单元需要均衡

当电池包中的每个电池单元具有相同的充电状态(SoC)时,我们说电池包中的电池单元是均衡的。SoC是指当电池充电和放电时,单个电池的当前剩余容量相对于其最大容量的比例。例如,一个10安时的电池单元若有5安时的剩余容量,则其SoC为50%。所有电池单元都必须保持在某一SoC范围内,以避免损坏电池或缩短寿命。SoC的允许最小和最大值因应用而异。在电池运行时间至关重要的应用中,所有电池单元可以在20%的最小SoC和100%的最大SoC(或满电状态)之间工作。需要最长电池寿命的应用可能会将SoC范围限制在最小30%到最大70%之间。这些是电动汽车和电网储存系统的典型SoC限制,它们使用非常大且昂贵的电池,更换成本极高。电池管理系统(BMS)的主要作用是严密监控电池包中的所有单元,确保没有任何电池单元充电或放电超出该应用的最小和最大SoC限值。

对于串联/并联电池单元阵列,一般可以认为并联连接的电池单元彼此之间会自动均衡。也就是说,随着时间推移,只要电池单元端子之间存在导电路径,并联连接的电池单元之间的充电状态就会自动均衡。同样可以认为,串联连接的电池单元的充电状态会随着时间推移而出现差异,原因有多方面。整个电池包中的温度梯度、阻抗、自放电速率或各电池单元负载之间的差异,可能导致SoC逐渐变化。尽管电池包充电和放电电流有助于使这些电池单元间差异变小,但除非周期性地均衡电池单元,否则累积的不匹配性将会有增无减。补偿电池单元的SoC渐变是均衡串联电池的最基本原因。通常情况下,被动或耗散均衡方案足以重新均衡电池包中容量接近的电池单元的SoC。

如图1a所示,被动均衡既简单又便宜。然而,被动均衡也非常缓慢,会在电池包内部产生有害的热量,均衡结果是将所有电池单元的剩余容量减少到与电池包中SoC最低的电池单元一致。此外,被动均衡缺乏能力有效解决另一种常见现象——容量不匹配引起的SoC误差。所有电池单元在老化时都会损失容量,损失速率往往不同,原因类似于串联电池单元的充电状态随着时间推移而出现差异。电池包电流均等地流入和流出所有串联电池单元,因此电池包的可用容量取决于电池包中容量最低的电池单元。只有图1b和图1c所示的主动均衡方法可以让电荷在整个电池包中重新分配,补偿电池单元间不匹配所造成的容量损失。

图1. 电池单元均衡典型拓扑结构。

电池单元间不匹配会显著缩短运行时间

电池单元间的容量或SoC不匹配可能会严重降低电池包可用容量,除非均衡电池单元。为使电池包容量最大化,要求在电池包充电和放电期间,电池单元是均衡的。在图2所示的例子中,一个10单元串联电池包由(标称)100 安时电池单元组成,最小容量单元与最大容量单元的容量误差为±10%,对该电池包充电和放电,直至达到预定SoC限值。如果SoC值限制在30%和70%之间,并且不进行均衡,则经过一次完全充电/放电循环之后,电池包可用容量相对于理论可用容量减少25%。被动均衡理论上可以在电池包充电阶段均衡各电池单元的SoC,但在放电期间,无法阻止第10个单元先于其他单元达到30%的SoC水平。即使在电池包充电期间进行被动均衡,在电池包放电期间也会损失可观的容量(不可用)。只有主动均衡解决方案才能恢复容量,在电池包放电期间将电荷从高SoC单元重新分配给低SoC单元。

图2. 电池单元间不匹配导致电池包容量损失的例子。

图3显示了使用理想主动均衡功能可以100%恢复因电池单元间不匹配而导致的容量损失。在稳态使用期间,当电池包从70% SoC的完全充电状态放电时,必须从第1个单元(最高容量电池单元)中取出存储的电荷并转移到第10个单元(最低容量电池单元),否则第10个单元会先于其他单元达到最小30%的SoC点,导致电池包必须停止放电以防寿命进一步缩短。类似地,在充电阶段必须将电荷从第10个单元中移除,重新分配到第1个单元,否则第10个单元会率先达到70%的SoC上限,导致充电周期必须停止。

在电池包使用寿命中的某个时间点,电池单元老化的差异将不可避免地造成电池单元之间的容量不匹配。只有主动均衡解决方案才能恢复容量,根据需要将电荷从高SoC单元重新分配给低SoC单元。为在电池包使用寿命期间实现最大容量,需要通过主动均衡解决方案来给单个电池单元有效充电和放电,以使整个电池包维持SoC均衡。

图3. 理想主动均衡实现容量恢复。

高效率、双向均衡提供最高容量恢复

LTC3300-2(见图4)是专为满足高性能主动均衡需求而设计的新产品。高效率、双向、主动均衡控制IC LTC3300-2是高性能BMS系统的关键组成部分。每个IC可以同时均衡多达6个串联连接的锂离子或磷酸铁锂电池单元。

图4. LTC3300-2高效率、双向、多电池单元主动均衡器。

通过在选定电池单元和一个由多达12个或更多相邻电池单元组成的子电池包之间重新分配电荷来实现SoC均衡。均衡决策和均衡算法必须由另外的电芯监控器件和控制LTC3300-2的系统处理器来处理。电池单元放电时,电荷从选定电池单元重新分配到整组相邻电池单元(12个或更多)。类似地,电池单元充电时,电荷从整组相邻电池单元(12个或更多)转移到选定电池单元。

所有均衡器可以沿任一方向同时工作,以尽量缩短电池包均衡时间。LTC3300-2有一个兼容SPI总线的串行端口。器件可以利用数字隔离器并联连接。多个器件由A0到A4引脚来确定器件地址唯一标识。LTC3300-2的串行接口由4个引脚组成:CSBI、SCKI、SDI和SDO。如果需要,SDO和SDI引脚可以连接在一起,形成单个双向端口。5个地址引脚(A0到A4)设置器件地址。所有与串行通信相关的引脚都是电压模式,其电平以VREG和V-电源为基准。

LTC3300-2中的每个均衡器都使用非隔离边界模式同步反激式功率级,以实现每个电池单元的高效充电和放电。6个均衡器各自都需要自己的变压器。每个变压器的原边连接在要均衡的电池单元两端,副边连接在12个或更多的相邻电池单元上,包括要均衡的电池单元。副边的电池单元数量仅受外部器件的击穿电压限制。电池单元的充电和放电电流由外部检测电阻结合相应的外部开关和变压器调整来设置,最高达到10 A以上。高效率是通过同步操作和适当的器件选择来实现的。各均衡器通过BMS系统处理器使能,并且保持使能状态,直到BMS命令均衡停止或检测到故障状态。

均衡器效率问题

电池包面临的最大克星之一是热量。高环境温度会让电池寿命和性能迅速降低。遗憾的是,在大电流电池系统中,为了延长运行时间或实现电池包快速充电,均衡电流也必须很大。均衡器效率低下会导致电池系统内部产生有害的热量,必须通过减少给定时间内可运行的均衡器数量或昂贵的散热方法来解决。如图5所示,LTC3300-2在充电和放电方向均实现90%以上的效率,相对于均衡器功耗相同但效率为80%的解决方案,前者的均衡电流可以增加一倍以上。此外,更高的均衡器效率会产生更有效的电荷再分配,进而实现更有效的容量恢复和更快的充电。

图5. LTC3300-2功率级性能。

结论

诸如EV、PHEV和ESS之类的新应用正在迅速增多。消费者始终期望电池使用寿命长,运行可靠,无性能损失。无论使用电池还是汽油作为动力,人们都要求汽车能运行五年以上没有任何明显的性能下降。对EV或PHEV而言,性能等同于电池动力支持的可行驶距离。EV和PHEV供应商不仅要提供高电池性能,还要提供数年的包括最短行驶距离的保修服务,以保持竞争力。随着电动汽车的数量和行驶时间的不断增长,电池包内无规律的电池单元老化正在成为一个长期问题,这也是运行时间缩短的主要原因。串联连接的电池运行时间总是受到电池包中最低容量电池单元的限制。一个较弱的电池单元就能拖累整个电池包。对于车辆供应商,由于行驶距离不足而更换或翻新保修期内的电池是非常不划算的。为
防止此类代价巨大的事件发生,可以为每个单元使用更大、更昂贵的电池,或者采用LTC3300-2等高性能主动均衡器来补偿电池单元不均匀老化引起的单元间容量不匹配问题。LTC3300-2可以让严重不匹配的电池包拥有与电池单元完全匹配且平均容量相同的电池包不相上下的运行时间。

点击这里,获取更多IOT物联网设计信息

围观 6
87

简介

软件定义无线电、雷达系统、电子战 (EW)、电子智能(ELINT) 以及测试测量设备等各种应用,需要带宽为数GHz的宽带数据采集系统。理想情况下,系统设计人员希望能够将信号源(例如天线)直接连接到宽带高动态范围模数转换器 (ADC) 进行数字化。这些应用中有很多涉及到子采样,其中目标信号是远高于ADC采样率的高频信号。这种方法的一个主要限制是当前ADC通常没有足够的带宽来支持这些超宽带应用。虽然有多种高速ADC提供增强的采样速率,但其中能够提供数GHz以上输入带宽的则很少。此外,在超过超高频 (UHF) 频段的频率,要保持良好的采样线性度在技术上是非常困难的;当信号频率高于1 GHz或2 GHz时,目前多数ADC的线性度会迅速降低。

使用HMC661LC4B或HMC1061LC5超宽带采样保持放大器可以克服这些限制,所述器件设计用于需要最大采样带宽、在宽带宽内具有高线性度和低噪声的微波数据转换应用。HMC661LC4B提供18 GHz输入带宽和出色的宽带线性度,可用作ADC前端的外部主采样器。在HMC661LC4B中进行扩展带宽采样后,低带宽保持输出波形便可由一个带宽低很多的ADC处理。HMC1061LC5是HMC661LC4B采样保持放大器的双列版本。

ADC在高输入频率时的线性度局限也得到解决,因为建立后的采样保持放大器波形是利用ADC的最佳基带线性度进行处理。另外,HMC661LC4B的随机采样抖动非常低(

本应用笔记提供了关于HMC661LC4B配合高速ADC使用以增强其带宽和高频性能的指南。本应用笔记介绍了采样保持放大器的一般操作,以及关于实现器件最高性能的一般操作建议。本应用笔记还说明了基于典型评板的试验板组件的设置和时序调整,其将HMC661LC4B用作高速ADC的主采样器。关于HMC661LC4B用于高速ADC的评估板设置时如何获得高性能采样保持放大器的示例,请参阅《模拟对话》文章“利用采样保持放大器和RF ADC从根本上扩展带宽以突破X波段频率”。

详文请阅:HMC661LC4B和HMC1061LC5 配合ADC使用的一般原则和程序

点击这里,获取更多IOT物联网设计信息

围观 2
63

《中国电机产业发展战略研究》报告在研究世界电机产业发展现状、中国电机产业相关政策和市场运行情况的基础上,对电机产业链发展状况进行了深入分析,提出了未来几年中国电机产业发展趋势,为地方政府和企业布局电机及上下游产业提供决策参考。

电机产品种类繁多,应用领域广泛

电机产品种类繁多,根据型号、规格、功率、轴伸、绝缘、编码器、转速开关、热敏元件、加热带等参数的不同可划分出各种各样电机。为了简单的划分电机产品,一方面,按照行业惯例,将电机分为大型电机、中小型电机和微型电机;另一方面,按照电机专用性将电机分为普通标准电机和特殊专用电机。

电机主要应用领域

电机的应用范围非常广泛,覆盖生产生活的各个方面,不同的电机应着不同的功能要求而出现。机床、轧钢机、鼓风机、印刷机、水泵、抽油机、起重机、传送带、生产线等设备上大量使用电动机;高层建筑的电梯、滚梯由电动机牵引,宾馆自动门、旋转门也靠电动机驱动;电动汽车由电机驱动;医疗设备中的心电机、X光机、CT、牙科手术工具、渗析机、呼吸机、电动轮椅等等,也都离不开电动机作为动力。

高效节能电机成为全球电机产业发展共识

在全球降低能耗的背景下,高效节能电机成为全球电机产业发展的共识。美国、加拿大、墨西哥、巴西、澳大利亚和新西兰等国家都相继制定了电动机的能效标准与能效标识制度,明确了电机节能与效率提高的时间表、执行方式与实施范围。比如,美国在EPACT标准之上制定的NEMAPremium超高能效标准、欧盟的EU—CEMEP标准、澳大利亚AS/NS1359.5—2000和中国GB18613—2012标准。

在电机系统节能方面,中国相继出台了一些指导政策,特别是2008年以后,加快了淘汰低效电机及拖动设备的速度,加强了高效节能电机推广力度;2009年5月,财政部和国家发改委将高效、超高效电机应用列入惠民工程;2009年和2012年工业和信息化部也先后发布了两批“高耗能落后机电设备(产品)淘汰目录”;2010年5月,财政部和国家发改委又将高效电机纳入节能产品惠民工程实施范围;《工业节能“十二五”规划》和《“十二五”节能环保产业发展规划》中将电机系统节能列入重点节能九大工程,提出示范推广稀土永磁无铁芯电机、电动机用铸铜转子技术等高效节能电机技术和设备。

新能源汽车发展带动驱动电机快速增长

2011年新能源汽车保有量增速为59.58%,在《节能与新能源汽车产业发展规划(2012—2020年)》等政策刺激下,中国新能源汽车产业市场预期良好,带动驱动电机市场规模迅速增长。目前,国内客车驱动电机系统以南车时代、天元电机为代表,大约有十几家。其中,混合动力客车是目前的主要电动客车产品,而纯电动客车上用的驱动电机系统对功率的要求较高,生产企业比较少。

中国电机产业投资机会与发展建议

(1)高效节能电机是电机产业发展的必然方向

节能减排是中国政府近几年工作的重点内容,其中,工业节能又是节能减排工作的重中之重,而在电机系统节能又是工业节能最重要的内容,国家相继出台了一些政策落实节能减排工作。

《工业节能“十二五”规划》和《“十二五”节能环保产业发展规划》中将电机系统节能列入重点节能九大工程,更明确提出示范推广稀土永磁无铁芯电机、电动机用铸铜转子技术等高效节能电机技术和设备。2010年发布的《节能产品惠民工程高效电机推广实施细则》,提高了节能电机的推广力度,细化了财政补贴范围。2012年9月份发布的《中小型三相异步电动机能效限定值及能效等级(GB18613-2012)》标准提高了各级电动机的能效指标,取消了电动机在75%额定输出功率下的效率要求。政策层面的大力推动与巨大的市场增长空间给电机节能环保材料、节能电机等带来大量投资机会。

(2)高效节能电机将带动产业链实现快速发展

高效节能电机产业链上游是铜、铝、硅钢、永磁材料等原材料供应商,下游是渠道销售商、高效电机应用厂商等。巨大的市场需求空间将使产业链上下游都围绕“电机高效化、节能化”进行一定调整,上游供给结构将发生调整,高效电机专用原材料和零部件生产方面具有优势的企业将收获更多的市场份额和更高的收益率。随着高效电机的规模化量产,其供给量将放大、成本和价格相对降低,下游厂商也将更广泛地采用高效电机对原有产品进行升级。

(3)地方政府应加紧制定产业规划,加强产业配套建设

地方政府应该从前瞻性、战略性的高度规划电机产业发展思路,结合当地基本情况,深入分析产业现状、发展优势、不足条件,认真制定电机产业发展规划,落实产业发展保障措施。产业发展规划从节能降耗、产业链优化的角度出发,促进电机产业向高效、节能方向发展。地方政府政府同时也应树立为企业服务、促进企业长期持续发展的意识,加强产业配套能力建设,为电机企业降低经营成本,优化运营环境提供土地、融资、财税政策支持。

本文转自:中国电机未来发展方向分析及发展建议

点击这里,获取更多电机控制设计信息

围观 4
85

页面

订阅 RSS - ADI