ADI

Analog Devices, Inc. (ADI) 宣布推出 Power by Linear™ 的 LTC2972,该器件是一款双通道电源系统管理器,可监视中间总线输入至负载点 (POL) 转换器的电流、功率和能耗。监视电路板的功率和能量使用情况是对其功耗实施管理、优化和降低的第一步,旨在减低服务器机架和数据中心冷却及实用程序成本。

LTC2972 通过一个 PMBus 接口方便地提供输入能耗 (以焦耳为单位来报告) 和运行时间的信息,为主机分担了繁重的轮询和计算任务。当与 POL 输出电压、电流和功率的数字测量相结合,LTC2972 可实现对电源系统转换效率的长期监视。LTC2972 为 FPGA、ASIC 和 DSP 电路板上的电源系统增加了基于软件的全面监视及控制功能,从而加速了产品上市进程、提升系统可靠性和优化电路板能耗。

查看 LTC2972 产品页面、下载数据手册、订购样片和评估板:www.analog.com/cn/LTC2972
该器件采用具有 0.25% 总未调整误差 (TUE) 的同类最佳 16 位模数转换器 (ADC) 来对电源输出电压进行微调、裕度调节和监视,从而可提高电路板产量和长期性能。电源输出电流采用一个检测电阻器、电感器 DCR 或电源的 IMON 输出来测量。电源排序、监察和 EEPROM 故障记录是内置的。故障触发 EEPROM 黑匣子记录功能,在简化故障分析的同时也为未来的系统改进提供了深度信息。每个通道具有可编程电源良好、或通用输入 / 输出 (GPIO) 引脚。LTC2972 与其他电源系统管理器相连接,可协调超过 2 个电源轨的排序和故障管理。该器件提供的 PMBus 兼容命令用于灵活地设置电源系统和进行数据回读。配置在 LTpowerPlay® 开发环境中完成,其支持所有的 Power by Linear 电源系统管理 (PSM) 器件。一旦设置完成,就不再需要软件编码,而可以自主运行。

LTC2972 规定在 0°C 至 70°C 的商用温度范围和 −40°C 至 105°C 的工业温度范围内工作,采用 44 引脚 6mm x 7mm QFN 封装。器件样品和评估电路板可通过ADI 网站或联系 ADI 当地办事处查询详情。如需更多信息,请登录www.analog.com/cn/LTC2972

特性概要:LTC2972

* 以数字方式管理 2 个电源
* 电源裕度调节或修整准确度至目标电压值的 0.25% 以内
* 通过 I2C/SMBus 数字接口发送 PMBus 兼容命令
* 用于配置和黑匣子故障记录并具 ECC 功能的 EEPROM
* 由 LTpowerPlay GUI 提供支持
* 电源排序器 ─ 基于时间,级联,支持跟踪
* 具 0.25% TUE 的 16 位 ADC 监视和获得以下遥测信息:
* 输入电源轨:电压、电流、功率和能耗
* 2 个电源输出:电压、电流和功率
* 器件和 2 个外部温度
* 监察 OV/UV 窗口门限:输入电压、两个电源电压、两个外部温度
* 具可编程去毛刺干扰延迟的可配置电源良好输出引脚
* 跨多个 ADI PSM 器件协调排序和故障管理
* 无需额外软件即可自主运行
* 可编程看门狗定时器
* 采用 3.3V 或 4.5V 至 15V 电源供电
* –40°C 至 105°C 工作温度范围
* 44 引脚 6mm × 7mm QFN 封装

价格与供货

产品 按生产量供货

LTC2972 已开始 千片批量的

价格 封装
每片 3.99 美元 6mm x 7mm QFN-44 封装

Analog Devices 公司简介

Analog Devices, Inc. 是全球领先的高性能模拟技术公司,致力于解决最棘手的工程设计难题。我们使客户能够利用无与伦比的技术进行检测、测量、供电、连接和解读,智能地在现实和数字领域之间架起桥梁,从而了解我们周围的世界。详情请浏览 www.analog.com/cn

点击 ADI 官方微博 http://weibo.com/analogdevices 了解最新产品信息。

欲订阅 ADI 的每月技术杂志 Analog Dialogue《模拟对话》,请访问: www.analog.com/cn/analog-dialogue.html

围观 16
78

作者:Reza Moghimi,ADI公司应用工程经理

高精度应用需要精心设计的低噪声模拟前端来获得最佳信 噪比(SNR),这就要求采用明智的方法来选择ADC以全面 准确地捕捉传感器信号。还要选用驱动运算放大器和基准 电压源等支持器件来优化电路性能。

振动、温度、压力和光等现实世界的信号需要精 确的信号调理和信号转换,才能在数字域中进 行进一步数据处理。为了克服高精度应用的多 种挑战,需要一个精心设计的低噪声模拟前端来实现最佳 信噪比(SNR)。但许多系统既负担不起最昂贵的器件,也 无法承受低噪声器件的更高功耗。本文解决有关利用噪声 优化方法来设计完整解决方案的问题。本文提出了一种系 统的方法来设计增益模块和ADC组合,并给出一个实例供 大家参考。以调理低频(接近直流)信号为例,对该电路进 行噪声计算和分析。

设计模拟前端时,请遵循以下七个步骤:

* 描述传感器或增益模块前端的电气输出。
* 计算ADC的需求。
* 为信号转换找到最佳ADC + 基准电压。
* 为运算放大器找到最大增益并定义搜索条件。
* 找到最佳放大器并设计增益模块。
* 根据设计目标检查解决方案总噪声。
* 运行仿真并验证。

第1步:描述传感器或增益模块前端的电气输出

信号可能直接来源于传感器,也可能在到达增益模块之前 经过EMI和RFI滤波器。为了设计增益模块,必须知道信号 的交流和直流特性以及可用的电源。知道了信号的特性和 噪声电平后,我们就能知道选择ADC时需要何种输入电 压范围和噪声电平。假设有一个传感器,以250 mV p-p (88.2 mV rms)和25 V p-p噪声的满量程幅度输出一个10 kHz 信号。进一步假设系统中有一个可用的5 V电源。有了这些 信息,我们应该能计算出第2步中的ADC输入端的信噪 比。为简化数据处理和避免混淆,假设我们将该解决方案 设计为在室温下工作。

第2步:计算ADC的需求

我们需要何种ADC、采样速率如何、多少位、噪声指标如 何?若从第一步知道了输入信号幅度以及噪声信息,我们 就能计算出增益模块输入端的信噪比(SNR)。我们需要选 择一个有较高信噪比的ADC。在选择ADC时,知道SNR将 有助于我们计算有效位数(ENOB)。此关系表达式如下。好 的ADC数据手册总会标出SNR和ENOB。此例中所需要的 86.8 dB SNR和14.2位ENOB决定了我们应选择一个16位的模 数转换器。此外,奈奎斯特准则要求采样率(fs)应至少两 倍于最大输入频率(n),因此一个20 kSPS ADC应该就已 足够。

下一步我们需要设计总体解决方案,使得噪声密度不超过 416 nV/√Hz。这就把信号调理电路的噪声确定为输入噪声 的1/10。

图1. 典型信号调理链

第3步:为信号转换找到最佳ADC + 基准电压
有了一系列的搜索条件,我们就有许多种方法找到合适的 ADC。要找到一个16位ADC,最简单的方法之一就是使用 厂商网站上的搜索工具。输入分辨率与采样速率,就可找 到许多推荐的ADC。

许多16位的ADC满足14.5位ENOB需求。如果您想得到更 佳的噪声性能,可使用过采样迫使ENOB达到16位(由4n过 采样得到n位增强)。通过过采样,您可以使用较低分辨率 的ADC:256过采样的12位ADC(44过采样)可得到16位噪声 性能。在我们的例子中,这意味着5.126 MHz采样率的12位ADC(20 kSPS × 256),或是42过采样的14位ADC;若1.28 MSPS 则更佳。然而这些选择的成本却和AD7685(16位、250 kSPS ADC)相当 。

从列表中我们选择了AD7685(16位 PulSAR® ADC ADC)。该转换 器具有90 dB SNR和250 kSPS采样率,符合我们的需要。此 ADC推荐搭配使用ADR421/ADR431精密XFET®基准电 压源。2.5 V的输入范围超过了我们需要的250 mV p-p输入 特性

图2. 典型的ADC选型表

AD7685基准输入具有动态输入阻抗,因此需进行去耦以使 寄生电感最小(方法是在引脚附近放置一个陶瓷去耦电容, 并用较宽的低阻抗走线进行连接)。一个22 F陶瓷芯片电 容可提供最佳性能。

第4步:为运算放大器找到最大增益并定义搜索条件

有了ADC的输入电压范围将有助于我们设计增益模块。为 了最大化动态范围,我们需要在给定的输入信号和ADC输 入范围内选取尽可能高的增益。这意味着我们可以将该例 子中的增益模块设计成具有10倍的增益。

虽然AD7685很容易驱动,但驱动放大器需要满足某些要 求。例如,为保持AD7685的SNR和转换噪声性能,驱动放 大器产生的噪声必须尽可能低,但要注意增益模块可同时 放大信号和噪声。若要使得噪声在增益模块前后都保持不 变,我们需要选择具有更低噪声值的放大器和相关元件。 此外,驱动器的THD性能应与AD7685相当,并且必须使 ADC电容阵列以16位水平(0.0015%)建立满量程阶跃。来自 放大器的噪声可使用外部滤波器进一步过滤。

运算放大器的输入端允许多大的噪声?牢记我们设计的总 体解决方案的噪声密度不超过416 nV/rt-Hz。我们设计的 增益模块应具有更低的本底噪声,系数为10,因为我们的 增益为10。这将确保来自放大器的噪声远低于传感器的本 底噪声。计算噪声裕量时,我们可假设运算放大器输入端 的噪声大致等于运算放大器的总噪声加上ADC的噪声。

第5步:找到最佳放大器并设计增益模块

知道了输入信号带宽后,运算放大器选型的第一步是选择 一个具有合理的增益带宽积(GBWP)的运算放大器,并且 该放大器可以最小的直流和交流误差处理该信号。为得到 最佳的增益带宽积,需要知道信号带宽、噪声增益以及增 益误差。下面给出这些术语的定义。一般而言,若想保持 增益误差小于0.1%,推荐选用增益带宽比输入信号带宽大 100倍的放大器。另外,我们需要一个可快速建立且驱动 能力良好的放大器。注意,我们的噪声预算要求运算放大器输入端的总噪声低于40.8 nV/√Hz,而ADC规定的指标为7.9 nV/√Hz。总结运算放大器的查找条件如下:UGBW > 1 MHz、5 V单电源、良好的电压噪声、电流噪声、THD特 性、低直流误差(不降低ADC性能)。

搜索ADC时采用相似的查找方法, 本例我们选择AD8641。AD8641为低功耗、精密JFET输入放大器,具有 极低的输入偏置电流和轨到轨输出特性,可在5 V至26 V电 源下工作。相关数据在下表中列出。我们可采用表中的元 件值对运算放大器进行同相配置。

表1. 图3 所示完整解决方案 的元件值

图3. 完整的解决方案

所有有源和无源元件都各自产生噪声,因此选择不降低性 能的元件尤其重要。例如,购买一个低噪声运算放大器并 在其周围放置大电阻就是一种浪费。牢记一个1 kΩ的电阻 器可产生4 nV的噪声。

如前所述,可考虑在ADC和该增益模块之间使用一个RC 滤波器,这样应该有助于缩小带宽并优化SNR。

第6步:根据设计目标检查解决方案总噪声

充分了解所设计电路中的各种误差源是极其重要的。为了 获得最佳SNR,我们需要写出前述方案的总噪声方程。方 程如下式所示。

我们可算出运算放大器输入端的总噪声,并确保其低于41.6 nV/√Hz,一如我们所预期的那样。

为了在整个带宽上对总噪声进行积分,我们可看到在滤波 器带宽上的ADC输入端的总噪声是3.05 μV,低于设计所需 的4.16 μV。由于AD8641的转折频率低于100 Hz,故此例中 的低频噪声(1/f)可忽略不计。

保持良好的信噪比需要关注信号路径中每一处细节的噪 声,并有良好的PCB布局。避免在任何ADC下方布设数字 线路,否则会将噪声耦合至芯片管芯,除非在ADC下方铺 一个接地层用作屏蔽。诸如CNV或时钟之类的快速开关信 号不应靠近模拟信号路径。应避免数字信号与模拟信号 交叠。

第7步:运行仿真并验证

刚开始验证电路设计时,使用PSpice宏模型(可从ADI网站 下载)比较合适。快速仿真显示出我们为解决方案所设计的 信号带宽。图4显示了位于AD7685输入端可选RC滤波器之 前和之后的响应。

图4. 图3所示电路的带宽仿真

如图5所示,10 kHz带宽上的总输出噪声接近31 μV rms, 略低于41 μV rms的设计目标。在量产之前需要制作原型并 验证整套解决方案。

图5. 图3电路的噪声响应仿真

总结

如今许多设计要求低功耗、低成本,而许多系统既负担不 起最昂贵的器件,也无法承受低噪声器件的更高功耗。为 了从信号调理电路得到最低的本底噪声和最佳性能,设计 者必须了解元件级别的噪声源。保持良好的信噪比需要关 注信号路径每一处细节的噪声。通过遵循以上步骤,便 可成功调理小型模拟信号,并使用超高分辨率ADC将其 转换。

参考电路

1. 应用笔记AN-202,IC放大器用户指南:去耦、接地及 其他一些要点。ADI公司。

2. 应用笔记AN-347, 如何排除干扰型噪声——方法及原 理:一种理性方法。ADI公司。

3. Barrow, J和A. Paul Brokaw。1989.“低频和高频电路接 地”,Analog Dialogue。 (23-3) ADI公司。

4.研讨会:传感器信号调理电路中的噪声优化(第一部分)。

5.研讨会:传感器信号调理电路中的噪声优化(第二部分)。

作者:Reza Moghimi

Reza Moghimi是ADI公司(美国加利福尼亚州圣何塞)精密信号调理部门的应用工程经理。他于1984年获得圣何塞州立大学电子工程学士学位,并于1990年获得工商管理硕士学位(MBA)。

点击这里,获取更多电机控制设计信息

围观 43
92

作者 :Tony Armstrong,电源产品部产品市场总监,凌力尔特公司

系统设计师和系统规划师必须从一开始就优先满足电源管理需求,以确保高效率的设计和成功的长期部署。幸运的是,领先的高性能模拟IC制造商现在提供越来越多的能量收集电源管理IC,从而极大地简化了此项任务。

能量收集的概念已经出现超过10年了,然而在现实环境中,由环境能源供电的系统一直很笨重、复杂和昂贵。不过,有些市场已经成功地采用了能量收集方法,如交通运输基础设施、无线医疗设备、轮胎压力检测和楼宇自动化市场。尤其是在楼宇自动化系统中,诸如占位传感器、自动调温器甚至光控开关等,以前安装时通常使用的电源或控制配线,现在已经不需要了,取而代之是,它们采用了局部能量收集系统。能量收集系统的一个主要应用是楼宇自动化系统中的无线传感器。

为方便说明,我们考虑一下美国能源使用的分布情况。建筑物每年都是能源生产的头号用户,约占总能耗的38%,紧随其后的是交通运输和工业领域,各占总能耗的28%。此外,建筑物可以进一步分成商用建筑和民用建筑,在这38%的能耗中,分别分得17%和21%。而民用建筑21%的能耗数字还可以进一步划分,其中取暖、通风和空调(HVAC)约占民用建筑总能耗的3/4。目前预计,从2003年到2030年,能源使用量将翻一番,依此推算,采用楼宇自动化系统可以节省多达30%的能源(数据来源:“全球能源、科技和气候政策展望(WETO)”,由欧盟多个研究机构联合撰写)。

类似地,一个采用能量收集方法的无线网络可以将一栋大楼中任何数量的传感器连接起来,以在非主要区域的大楼或房间中没人时,调节该区域的温度或关掉该区域的照明灯,从而降低HVAC和电力费用。此外,能量收集电子线路的成本常常低于布设电源线的成本或更换电池所需的日常维护成本,因此用收集的能量供电之方法,显然有经济收益。

不过,如果每个节点都需要自己的外部电源,那么很多无线传感器网络就失去了优势。尽管电源管理技术确实在持续发展,已经使电子电路能在给定电源情况下工作更长时间,但这是有限度的,而用收集的能量供电提供了一种补充方法。因此,能量收集通过将局部环境能源转换成可用的电能,成为一种给无线传感器节点供电的方法。环境能源包括光、温差、振动波束、已发送RF信号或能通过换能器产生电荷的任何能源。这些能源在我们周围到处都是,利用合适的换能器,如面向温差的热电发生器(TEG)、面向振动的压电组件、面向太阳光(或室内照明光)的光伏电池等,可将这些能源转换成电能,甚至可以利用潮湿气体产生的电能。这些所谓的“免费”能源可用来自主地给电子组件和系统供电。

现在所有无线传感器节点都能以微瓦级平均功率工作,因此用非传统电源给它们供电是可行的。这导致了能量收集的出现,在使用电池不方便、不现实、昂贵或危险的系统中,可用能量收集提供的电力给电池充电、补充或代替电池。用收集的能量供电,还可以不再需要导线来供电或传送数据。此外,工业过程、太阳能电池板或内燃机产生的能量也可以收集起来使用,否则就浪费掉了。

能量收集应用的问题和特性

一个典型的能量收集配置或无线传感器节点(WSN)由 4 个方框组成(参见图 1)。它们是:1)环境能源 ;2)换能器组件和给下游电子组件供电的电源转换电路;3)将该节点连接到现实世界的检测组件和计算组件(由微处理器或微控制器组成,处理测量数据并将数据储存到存储器中);4)由短程无线单元组成的通信组件,实现与相邻节点及外部世界的无线通信。

环境能源的例子包括 :连接到 HVAC 管道等发热源的热电发生器(TEG)或热电堆 ;或者连接到诸如窗玻璃等机械振动源的压电换能器。在热源情况下,一个紧凑型热电器件(常称为换能器)可将小的温差转换成电能。而在存在机械振动或压力的情况下,压电器件可用来将机械能转换成电能。一旦电能产生出来,就可以由能量收集电路转换并调整为合适的形式,以给下游电子组件供电。因此,一个微处理器可以唤醒一个传感器,以获取读数或测量值,然后读数或测量值可由一个模数转换器进行处理,以通过一个超低功率无线收发器传送。

图 1 :一个典型的能量收集系统或无线传感器节点的主要组成方框图。

有几种因素影响无线传感器节点能量收集系统的功耗特性。表 1 概述了这些因素。

表 1 :影响无线传感器节点功耗的因素。

当然,由能量收集源所提供的能量取决于它处于操作状态的时间。因此,比较能量收集电源的主要衡量标准是功率密度,而不是能量密度。能量收集一般会遇到低的、可变的和不可预测的可用功率,因而通常采用了一种与能量收集器和一个辅助电能储存器相连的混合结构。收集器由于其无限的能量供应和功率不足而成为系统能源。辅助电能储存器(一个电池或一个电容器)可产生较高的功率,但储存的能量较少,它在需要的时候供电,其他情况下则定期从收集器接收电荷。

所以,在没有可供收集功率的环境能量时,必须采用辅助电能储存器给 WSN 供电。当然,从系统设计人员的角度而言这将导致复杂程度的进一步增加,因为他们现在必须考虑这样一个问题“为了对缺乏环境能量源的情况下提供补偿,应在辅助储存器中存储多少能量 ?”究竟需要储存多少能量将取决于诸多因素,包括 :

1. 缺乏环境能量源的时间长度
2. WSN 的占空比(即数据读取和传输操作必须具备的频率)
3. 辅助储存器(电容器、超级电容器或电池)的大小和类型
4. 是否可提供既能充当主能量源、同时又拥有充分剩余能量(用于当其在某些特定时段内不可用时为辅助电能储存器充电)的足够环境能量 ?

最先进和现成有售的能量收集技术(例如振动能量收集和室内光伏技术)在典型工作条件下产生毫瓦量级的功率。尽管这么低的功率似乎用起来很受限,但是若干年来收集组件的工作可以说明,无论就能量供应还是就所提供的每能量单位的成本而言,这些技术大体上与长寿命的主电池类似。此外,采用能量收集的系统一般能在电能耗尽后再充电,而这一点主电池供电的系统是做不到的。

正如已经讨论的那样,环境能源包括光、温差、振动波束、已发送的 RF 信号,或者其他任何能通过换能器产生电荷的能源。下面的表 2 说明了从不同能源可产生多少能量。要成功设计一款完全独立的无线传感器系统,需要现成的节电型微控制器和换能器,并要求这些器件消耗最小和来自低能量环境的电能。幸运的是,低成本和低功率传感器及微控制器已经上市两三年左右了,不过只是在最近,超低功率收发器才投入商用。然而,在这一系列环节中,处于落后的一直是能量收集器。现有的能量收集器模块实现方案(如图 1 所示)往往采用低性能和复杂的分立型结构,通常包括30 个或更多的组件。此类设计转换效率低,静态电流高。这两个不足之处均导致最终系统的性能受损。低转换效率将增加系统上电所需的时间,反过来又延长了从获取一个传感器读数至传输该数据的时间间隔。高静态电流则对能量收集源的输出能达到的最低值有所限制,因为它必须首先提供自己工作所需的电流,多出来的功率才能提供给输出。正是在能量收集器这个领域,凌力尔特公司最近推出的产品 LTC3109、LTC3588-1 和 LTC3105 使性能和简单性上提升到一个新水平。

这些能量收集 IC 所带来的新性能水平是采用分立式方案完全无法实现的。因此,它们由于能够收集非常低的环境能量而成为了推动能量收集系统制造商成长的“催化剂”。凭借这种性能水平,再加上换能器、微控制器、传感器和收发器经济合算的价位,使其市场接受度得以提升。这也是此类系统在全球范围的众多应用中受到大量关注的原因之一。

表 2 :能源以及它们可产生多少能量。

一个现实世界的例子 :“飞机健康状况监视”
今天,大型机群的结构性疲劳是一个现实问题,因
为如果忽视该问题,就可能导致灾难性后果。目前,飞
机结构状况是通过多种检查方法来监视的,如通过改进
的结构化分析和跟踪方法,通过采用评估结构完整性的
创新理念,等等。这些方法有时又统称为“飞机健康状
况监视”方法。在飞机健康状况监视过程中,采用了传
感器、人工智能和先进的分析方法以实时进行连续的健
康状况评估。
声发射检测是定位和监视金属结构中产生裂缝的领
先方法。这种方法可以方便地用来诊断合成型飞机结构
的损坏。一个显然的要求是,以简单的“通过”、“未通过”
形式指示结构完整性,或者立即采取维修行动。这种检
测方法使用由压电芯片构成的扁平检测传感器和光传感
器,压电芯片由聚合物薄膜密封。传感器牢固地安装到
结构体表面,通过三角定位能够定位装载了传感器的结
构体的声活动。然后用仪器捕捉传感器数据,并以适合
于窄带存储和传送的形式用参数表示这些数据。
因此,无线传感器模块常常嵌入到飞机的各种不同
部分,例如机翼或机身,以进行结构分析,不过为这些
传感器供电可能很复杂。因此,如果以无线方式供电或
者甚至自助供电,那么这些传感器模块就可以更方便地
使用,效率也更高。在飞机环境中,存在很多“免费”能源,
可用来给这类传感器供电。两种显然和可以方便地利用
的方法是热能收集和 / 或压电能收集。
在典型的飞机发动机情况下,其温度可能在几百℃
到 1,000℃甚至 2,000℃的范围内变化。尽管这种能量大多数都以机械能(燃烧和发动机推力)的形式损失了,
但是仍然有一部分是纯粹以热量形式消耗的。既然席贝
克效应是将热量转换成电功率的根本热力学现象,那么
要考虑的主要方程是 :
P = ηQ
其中 P 是电功率,Q 是热量,η 是效率。
较大的热电发生器(TEG)使用更多热量(Q),产
生更多功率(P)。类似地,使用数量为两倍的功率转换
器自然产生两倍的功率,因为它们可以获取两倍的热量。
较大的热电发生器通过串联更多的 P-N 节形成,不过,
尽管这样可以在温度变化时产生更大的电压(mV/dT),
但是也增大了热电发生器的串联电阻。这种串联电阻的
增大限制了可提供给负载的功率。因此,视应用需求的
不同而有所不同,有时使用较小的并联热电发生器而不
是使用较大的热电发生器会更好。不管选择哪一种热电
发生器,都有很多厂商提供商用热电发生器产品。

通过给一个组件施加压力,可以产生压电,而压电
反过来又产生一个电位。压电效应是可逆的,展现正压
电效应(当加上压力时,产生一个电位)的材料也展现
反压电效应(当加上一个电场时,产生压力和 / 或应力)。
为了优化压电换能器,需要确定压电源的振动频率
和位移特性。一旦确定了这些电平,压电元件制造商就
能够设计一款压电元件,以机械的方式将其调谐至特定
的振动频率,并确定其尺寸以提供所需的功率量。压电
材料中的振动将触发正压电效应,从而导致电荷积聚在
器件的输出电容上。积累的电荷通常相当少,因此 AC
开路电压很高,在很多情况下处于 200V 量级。既然每
次挠曲产生的电荷量相对较少,那么有必要对这个 AC
信号进行全波整流,并在一个输入电容器上逐周期积累
电荷。

就能源选择而言,在热源和压电源之间存在权衡问题。不过,不管选择哪一种方法,这两种方法都是可行和现实的解决方案,可以非常方便地与现有技术一起使用。下表总结了这两种方法的优缺点 :

能量收集电源转换 IC

LTC3109 是一种高度集成的 DC-DC 转换器和电源管理器。它能从诸如 TEG(热电发生器)、热电堆甚至小型太阳能电池等极低的输入电压源收集和管理多余的能量。其独特的专有自动极性拓扑允许该器件用低至 30mV 的输入电源工作,而不管电源极性如何。

图 2 :LTC3109 的典型应用原理图。

上 面 的 电 路 用 两 个 紧 凑 型 升 压 变 压 器 来 提 高LTC3109 输入电压源的电压,然后该器件为无线检测和数据采集提供一个完整的电源管理解决方案。它能收集小的温度差,不用传统的电池电源,就能产生系统电源。就低至 30mV 的输入电压而言,推荐使用主 - 副匝数比约为 1:100 的变压器。就更高的输入电压而言,可用更低的匝数比来获得更大的输出功率。这些变压器是标准、现成有售的组件,而且诸如 Coilcraft 等磁性元件供应商可稳定供货。

LTC3109 采用一种“系统级”方法来解决复杂问题。它转换低压源,并管理多个输出之间的能量。用LTC3109 外部的充电泵电容器和内部的整流器对每个变压器副端绕组上产生的 AC 电压升压并整流。该整流器电路将电流馈送进 VAUX 引脚,从而向外部 V AUX 电容器、然后是其他输出供电。

内部 2.2V LDO 可以支持低功率处理器或其他低功率 IC。该 LDO 由 VAUX 和 VOUT 二者之间较高的一个供电。这使它能在 VAUX 一充电到 2.3V 就能有效运行,同时 VOUT存储电容器仍然在充电。倘若 LDO 输出上有阶跃负载,那么如果 VAUX 降至低于 VOUT,电流就可能来自主 VOUT 电容器。该 LDO 能提供 3mA 输出电流。

VSTORE 电容器也许值非常大(数千微法甚至数法拉),以在输入电源可能掉电时保持供电。一旦加电完成,那么主输出、备份输出和开关输出都可用。如果输入电源发生故障,那么仍然可以利用 VSTORE 电容器的供电继续运行。

LTC3588-1 是一款完整的能量收集解决方案,为包括压电换能器在内的低能量电源而优化。压电器件通过器件的挤压或挠曲产生能量。视尺寸和构造的不同而不同,这些压电元件可以产生数百 uW/cm2 的能量。应该提到的是,压电效应是可逆的,即展现直接压电效应(一加上压力就产生电位)的材料也展现反向压电效应(一加上电压就产生压力和 / 或应力,即挠曲)。

图 3 :LTC3588 的典型应用原理图。

LTC3588-1 在 2.7V 至 20V 的输入电压范围内工作,从而非常适用于多种压电换能器以及其他高输出阻抗能源。其高效率降压型 DC/DC 转换器提供高达 100mA 的连续输出电流或者甚至更高的脉冲负载。其输出可以设定 为 4 个 固 定 电 压(1.8V、2.5V、3.3V 或 3.6V) 之 一,以给无线发送器或传感器供电。输出处于稳定状态(无负载)时,静态电流仅为 950nA,从而最大限度地提高了总体效率。

LTC3588-1 用来直接与压电或可替代高阻抗 AC 电源连接、给电压波形整流以及在外部存储电容器中储存收集到的能量,同时通过一个内部并联稳压器消耗过多的功率。具 1V 至 1.4V 迟滞窗口的超低静态电流(450nA)欠压闭锁(ULVO)模式使电荷能在存储电容器上积累,直到降压型转换器能高效率地将部分储存的电荷传送到输出为止。

LTC3105 是一款超低电压升压型转换器和 LDO,专门用来极大地简化从低压、高阻抗可替换电源收集和管理能量的任务,如光伏电池、热电发生器(TEG)、燃料电池等电源。其同步升压型设计以低至 250mV 的输入电压启动,从而使该器件非常适用于在不够理想的照明条件下,从甚至最小的光伏电池收集能量。其 0.2V 至5V 的宽输入电压范围使该器件成为多种应用的理想选择。集成的最大功率点控制器(MPPC)使 LTC3105 能抽取电源能所提供的最大可用功率。如果没有 MPPC,电源能产生的功率仅为理论最大值的一小部分。峰值电流限制自动调节,以最大限度地提高电源转换效率,同时突发模式(Burst Mode ®)工作将静态电流降至仅为22uA,从而最大限度地降低了能量储存元件的漏电流。

超低 I QLDO 能直接给流行的低功率微控制器或传感器电路供电。如果没有 MPPC,电源转换器能产生的功率仅为理论最大值的一小部分。峰值电流限制自动调节,以最大限度地提高电源转换效率,同时突发模式(Burst Mode ®)工作将静态电流减小至仅为 22μA,从而最大限度地降低了能量储存元件的漏电流。超低 IQLDO 能直接给常用的低功率微控制器或传感器电路供电。图 4 所示电路采用了 LTC3105,用单节光伏电池给单节锂离子电池充电。在太阳能能源可用时,该电路能使电池连续充电,而当太阳能能源不再可用时,电池能用储存的能量给应用供电。

LTC3105 能以低至 250mV 的电压启动。在启动时,AUX 输出最初在同步整流器禁止的情况下充电。一旦VAUX 达到约 1.4V,该转换器就离开启动模式,进入正常工作状态。最大功率点控制在启动时不使能,不过,电流从内部限制到足够低的水平,以允许靠电流非常小的输入电源启动。尽管该转换器处于启动模式,但是AUX 和 VOUT 之间的内部开关仍然保持禁止,而且 LDO也是不采用。参见图 5 所示典型启动时序举例。

当 VIN 或 VAUX 高于 1.4V 时,转换器进入正常工作状态。转换器继续给 AUX 输出充电,直到 LDO 输出进入稳定状态为止。一旦 LDO 输出进入稳定状态,转换器就开始给 VOUT 引脚充电。VAUX 仍然保持足够高的值,以确保 LDO 处于稳定状态。如果 VAUX 高于保持LDO 稳定所需的值,那么就从给 AUX 输出充电转变为给VOUT 输出充电。如果 VAUX 下降太多,那么电流就重新流向 AUX 输出,而不是用来给 VOUT 输出充电。一旦VOUT 上升到高于 VAUX,就启动一个内部开关,以将这两个输出连接到一起。

如果 VIN 高于被驱动的输出(VOUT 或 VAUX)上的电压,或被驱动的输出低于 1.2V,那么同步整流器就禁止,并以关键的传导模式工作,从而甚至在 VIN>VOUT 时,仍能实现稳定状态。

如果输出电压高于输入电压并高于 1.2V 时,那么同步整流器就启动。在这种模式时,SW 和 GND 之间的N 沟道 MOSFET 启动,直到电感器电流达到峰值电流限制为止。一旦达到电流限制,N 沟道 MOSFET 就关断,SW 和被驱动输出之间的 P 沟道 MOSFET 就启动。该开关一直保持接通,直到电感器电流降至低于谷值电流限制为止,然后重复该周期。当 VOUT 达到稳定点时,连接到 SW 引脚的 N 沟道和 P 沟道 MOSFET 都禁止,转换器进入休眠状态。

图 4 :利用单节光伏电池的锂离子电池涓流充电器。

图 5 :典型的 LTC3105 启动时序。

为了给微控制器和外部传感器供电,一个集成的LDO 提供稳定的 6mA 轨。该 LDO 由 AUX 输出供电,从而允许该 LDO 在主输出仍然在充电时达到稳定状态。LDO 的输出电压可以是固定的 2.2V,或可通过电阻器分压器调节。

集成的最大功率点控制电路允许用户为给定电源设定最佳输入电压工作点,参见图 6。MPPC 电路动态调节电感器的平均电流,以防止输入电压降至低于 MPPC 门限。当 VIN 高于 MPPC 电压时,电感器电流增大,直到 VIN 被拉低至 MPPC 设定点为止。如果 VIN 低于 MPPC 电压,那么电感器电流就减小,直到 VIN 升高到 MPPC 设定点为止。

LTC3105 纳入了在轻负载时最大限度地提高效率的功能,同时,通过将电感器峰值和谷值电流作为负载的函数加以调节,还在重负载时增强了提供功率的能力。在轻负载时,将电感器峰值电流降至 100mA,可降低传导损耗,从而优化了效率。随着负载增加,电感器峰值电流自动提高至 400mA(最大值)。当在中等负载时,电感器峰值电流可能在 100mA 至 400mA 之间变化。上述功能的优先级低于 MPPC 功能,并仅当电源提供的功率超过负载所需时才起作用。

图 6 :面向单节光伏电池的典型最大功率点控制点。

在诸如光伏转换之类的应用中,输入电源也许长时间不存在。为了在这类情况下防止输出放电,LTC3105纳入了欠压闭锁(UVLO)功能,如果输入电压降至低于90mV(典型值),那么该功能就强制转换器进入停机模式。在停机模式,连接 AUX 和 VOUT 的开关启动,LDO置于反向隔离模式,流进 VOUT 的电流降至 4uA(典型图 6 :面向单节光伏电池的典型最大功率点控制点。值)。在停机模式,通过 LDO 的反向电流限于 1uA,以最大限度地减轻输出放电。

结论

由于拥有模拟开关模式电源设计专长的人员在全球范围内都处于短缺的局面,因此要设计出如图 1 所示的高效能量收集系统一直是很困难的事。面临的主要障碍是与远程无线感测相关联的电源管理。不过,随着 L TC3105、L TC3109 和 L TC3588-1 的推出,这种状况即将完全改变。这些器件能够从几乎所有的光源、热源或机械振动源提取能量。此外,凭借其全面的功能组合以及设计的简易性,它们还极大地简化了能量收集链中难以完成的功率转换设计。对于 WSN 设计师而言这是个好消息,因为其高集成度(包括电源管理控制和现成有售的外部组件)使之成为目前市面上最小、最简单和易于使用的解决方案。

因此,系统设计师和系统规划师必须从一开始就优先满足电源管理需求,以确保高效率的设计和成功的长期部署。幸运的是,领先的高性能模拟 IC 制造商现在提供越来越多的能量收集电源管理 IC,从而极大地简化了此项任务。

点击这里,获取更多电机控制设计信息

围观 2
93

由于光伏(PV)太阳能面板设施可能发生新的危险,尤其是火灾,所以未来的太阳能设计要求光伏系统具备电弧检测能力。

今天我们将说说电弧检测需求的产生原因、对检测方法进行分析,并提出了一种可能的解决方案来将电弧检测集成到光伏逆变器设备和设施中。

直流电弧检测——研究

挪威科技大学(NTNU)研究显示,30 V的电压即足以引起并维持电弧。他们的测试方法聚焦于电压域以检测电弧。他们还观测到,当电弧燃烧时,光伏模块上的电压(典型值为60 V)下降。根据他们的电弧测试,压降幅度约为10 V。电压域分析的主要原因是实验中使用了一个低成本微控制器。若非如此,他们建议使用更强大的DSP对电流信号的功率谱密度进行分析。

2007年,Swissolar在瑞士组织了一次名为“光伏直流阵列中的电弧——潜在危险和可能的解决方案”国际研讨会,介绍了关于直流电弧对MPPT跟踪的影响的一些有意义的情况,并建议未来的电弧检测机制应重点考虑这些情况。

图1. 电弧对MPPT的影响(Willi Vaassen,TÜV)

图2显示了不同电弧间隙(1 mm、3 mm和6 mm)对应的MPPT,同预期一样,性能降幅非常可观。

图2. 电弧检测对MPPT工作点的影响(Willi Vaassen,TÜV)

TÜV的进一步研究显示了MPPT跟踪器中相同大小的间隙引起的工作点偏差。结果再次表明MPPT性能大幅降低。

对于这种直流电弧问题,建议解决方案是基于电流测量分析。检测机制监视负载中的电流和流至地的电流。负载中的电流通过一个滤波器,仅留下电弧特征频率范围。然后进行信号调理,并通过一个逻辑机制来关闭起弧源,即光伏模块或光伏逆变器。

电弧检测仿真

设置

图3是一个可能的电弧产生设置,其符合UL1699B标准。

图3. 电弧发生器(照片属ADI所有,拍摄于利默里克工厂太阳能实验室)

光伏电源系统与一个电弧发生器和一个1 Ω的镇流电阻串联,形成测试系统设置的基础。对通过系统的电压和电流进行分析,以探索可能的检测机制。

图4. 电弧设置

电压波形分析

首先关注电弧上的电压,我们可得出一些有意义的信息。电弧间隙打开时,间隙上的电压约为71 V。间隙闭合时,产生一个小电弧,图5显示间隙上的电压降低20 V。当间隙保持闭合状态时,一个稳定的电流流过,电弧上几乎检测不到电压。

图5. 电弧间隙上的电压波形的直流和交流分量

然而,当间隙打开且电弧持续发生时,可以看到间隙上的压降约为20 V。此电压保持不变,随着间隙增大,其上的电压会提高。在某一时间点,电弧不再继续发生,间隙上的电压回到设定值。

对电压波形交流性能的进一步分析可揭示更多信息。当间隙闭合且没有电弧时,电压波形上出现瞬变,如图6中红圈区域所示。

图6. 电弧间隙上电压的交流分析

当电弧燃起并持续时,又出现一个瞬变。随着间隙进一步打开,最初高频分量的幅度看似较低,但随着间隙变宽,其幅度也增大,直至间隙过宽(100 V/14 A为14 mm)导致电弧不能维持自身而停止。当电弧停止时,再次出现一个高瞬变。

电流信号分析

现在看看经过系统的电流方面的情况,下面的波形是流经系统的电流的预览。最初间隙闭合,然后间隙打开,最后间隙过大导致电流无法流过,电弧完全停止。

图7. 从电流分析得到的电弧直流和交流分量

对流过系统的电流的进一步分析显示:当电弧存在时(图8),系统中存在高频成分;当电弧不存在时(图9),这些信号也不存在。

图8. 无电弧——无高频成分

图9. 有电弧——有高频成分

频谱分析

对电弧频谱进行分析也是有意义的。

图10. 电弧电流频谱

图11显示了系统中存在电弧时的频谱。它在系统的基本电平以上是可见的。频率较低时,电平较高,更易于检测,但在这种较低电平时,存在系统开关元件,需要予以滤除以便检测电弧特征。在频率范围的较低区域可能需要使用较高分辨率的ADC。

图11. 无电弧频谱

频率较高时,虽然电弧以较低的幅度存在,但系统的开关元件也以较低的幅度存在,因此电弧检测更容易。在较高频率区域,较低分辨率的ADC可能就足够了。

还有一条有价值的信息,那就是在相同条件下,无论产生电弧的电流/电压为多大,图11中的频谱变化极小。这表明电弧具有一致性,因此系统中可以检测到。

结语

必须根据下列要点解决直流电弧问题:
☑ 对象是可能产生电弧的系统和需要电弧检测的电路,确保能检测到所有电弧;

☑ 然后测量电弧的强度或幅度。这是明确判断电弧是否产生所必需的,同时还能消除系统受到外部辐照所引起的电弧误报。因此,必须采用一种滤波机制来消除电弧误判;

☑ 确保串联和并联电弧均得到处理,完整检测可能需要(也可能不需要)多个独立电路; ☑ 确保电子电路也能自动或手动禁用光伏阵列和电网连接,以便阻止火灾扩散。

本文讨论了多项内容,总结如下:

光伏逆变器的电弧检测是对新开发太阳能光伏逆变器的一项要求;

起弧分析或电弧检测主要是在电流域展开;

测试都是在直流域中展开,采用符合UL1699B指令的试验装置,它具有两个固体电极,大电流(7 A至14 A)通过其中,然后将其分开,直至电弧产生;再继续分开,直至距离足够远,电弧停止;

最大功率点跟踪(MPPT)在电弧检测中可发挥重要作用,开发解决方案时应予以考虑;

电弧检测可以在较低频谱(100 kHz区域)中进行分析。一种可能的电弧检测解决方案是使用100 kHz频谱的带通滤波器和 ADSP-CM40 系列内置 ADC;

目前市场上已有 AFCI 产品,其专门设计用于检测交流电路中的电弧特征。

光伏逆变器的电弧检测必须包含一种预测电弧发生的方法,以便在持续电弧发生之前或持续电弧的寿命极早阶段提供预警,并且能关断电弧源。然后平稳地关断光伏逆变器,防止火灾和逆变器受损(如可能)。

围绕电弧预测需要做更多研究和分析。

点击这里,获取更多电机控制设计信息

围观 32
142

目前,我们正在把万事万物连接起来,因此物联网诞生。一旦完成这一整体连接,其带来的总体成果就能使我们开始着手打造下一系列令人兴奋的新系统。然而,此举产生了大量必须予以信任和处理的数据。

目前,我们正在把万事万物连接起来,由此,物联网(IoT)诞生了。一旦完成这一整体连接,其带来的总体成果就能使我们开始着手打造下一系列令人兴奋的新系统。然而,此举产生了大量必须予以信任和处理的数据。

但是,正如人们所说的:“买家要小心”。物联网很好,但是其整体连通性也为无意或恶意的数据损坏和污染提供了机会,但这些漏洞可以使用加密方法予以解决。系统设计师面临的一个决择是:是选基于软件还是基于硬件的安全方案。这两种技术都能防范数据遭受未经授权的读取或者修改;然而,我们有必要在最终选择之前,对其不同特征进行进一步检视。

基于软件的安全

软件安全系统利用已有的系统资源,率先在市场上出现。这些解决方案由于是与系统中其他程序共享资源来保护和保卫数据,因此相对便宜。软件实现的另一个功能是能够随着威胁和漏洞的演进而修改和升级安全性。

软件安全系统增加了主处理器的工作量,因此可能会影响整个系统的效率。除了这些担忧之外,软件方法是系统安全架构中的薄弱环节,秘密仍然容易被发现,且算法通常运行在通用的非安全硬件上,同样有被攻击的风险。

综上所述,基于软件的安全具有成本效益,其在物理安全环境中可以有效地防止未经授权的系统接取。

基于硬件的安全

基于硬件的安全使用专用集成电路(IC)或具有专用安全硬件的处理器——它们专门为提供加密功能和防范攻击进行设计。加解密和身份认证等安全操作发生在对密码算法性能优化过的IC硬件层面,另外,密钥和终端应用的关键参数等敏感信息被保护在加密硬件的电气边界内。

安全IC包含数学加速器、随机数生成器、非易失存储器、篡改检测和物理不可仿制功能(PUF)等电路模块。PUF模块特别有趣——它具有独特的特性,可以使密钥等敏感数据免受入侵或利用反向工程提取。美信(Maxim)DS28E38是整合了PUF的安全IC的一个例子——它既可以生成密钥,又可以防止侵入式安全攻击。

对芯片进行篡改既非常困难又很昂贵,因此网络犯罪分子无法对基于硬件的安全实施攻击。另外,当受到攻击时,安全IC能够在遭受破坏之前关闭操作并毁掉敏感数据。这种解决方案可能会稍微贵一些,但它可大大降低嵌入式设备、周边和系统遭受未经授权访问的风险。

基于硬件的安全对所有应用环境,尤其是对那些终端设备暴露在外、可被坏人物理接触的环境非常有效。

系紧你的安全带

总之,安全可是个复杂课题。但是,为了防止物联网设备等终端产品上发生不好的状况,我们必须直接面对和解决这个问题。基于软件的安全是种选择,但硬件安全解决方案才是通向全面、可靠的安全之路。

本文来源:物联网安全:硬件还是软件可靠?

点击这里,获取更多IOT物联网设计信息

围观 21
148

页面

订阅 RSS - ADI