基于IMU和地磁传感器的捷联惯性导航系统

作者:Joel Li和Van Yang

摘要

本文旨在介绍我们使用ADI公司的惯性测量单元(IMU)传感器ADIS16470和PNI的地磁传感器RM3100构建的捷联惯性导航系统(SINS)。实现了基于磁力、角速率和重力(MARG)的SINS的一些基本过程,包括电磁罗盘(地磁传感器)校准、使用扩展卡尔曼滤波器(EKF)的姿态和航向参考系统(AHRS)和航迹跟踪。还实现了使用最小平方误差(MSE)方法的松耦合传感器融合技术。文章展示了每个过程步骤使用的算法和实验设置。本文最后讨论了结果分析和用于提高导航准确性的方法。

简介

随着服务机器人市场和技术的发展,导航已成为研究和应用中的一个热点。与车辆、船舶或飞机相比,服务机器人体积小,成本低,因此它们的导航系统应该具有捷联和低成本的特点。传统的稳定平台导航系统通常要采用独立的加速度计和光纤或激光陀螺仪,所有传感器都机械且刚性地安装在与正在移动的车辆隔离的稳定平台上。这导致了尺寸大、可靠性差、成本高的缺点。相反,在捷联惯导系统中,惯性传感器直接固定在车辆本体上,这意味着传感器会与车辆一起旋转。这种捷联方法消除了稳定平台惯导的缺点。然而,平台惯导的准确性通常高于SINS。平台惯导往往可以达到战略级(0.0001°/时的陀螺仪偏置,1μg的加速器偏置)或军用级(0.005°/时的陀螺仪偏置,30μg的加速器偏置),而多数SINS只能到达导航级(0.01°/时的陀螺仪偏置,50μg的加速器偏置)或战术级(10°/时的陀螺仪偏置,1mg的加速器偏置)。对于大多数服务机器人或AGV导航应用,这一精度足够了。

导航方法很多,包括机器视觉、GPS、UWB、SLAM型激光雷达等。基于IMU的惯性导航始终是导航的重要组成部分。然而,由于这种传感器的限制——例如偏置误差、轴间误差、噪声,特别是零偏不稳定性——惯性导航通常需要采用一个伙伴传感器,定期为它提供参考或校准,本文将这种情况称为传感器融合。许多传感器都可以与IMU融合,例如摄像头和程表,但在这些传感器中,地磁传感器是一种低成本的方案,可与IMU配合获得姿态信息。

在本文中,我们使用ADI的IMU ADIS16470和地磁传感器来开发平台和算法,实现捷联惯性导航系统。但是,地磁传感器只能提供姿态信息。对于航位推算或距离测量,我们只能使用IMU中的加速度传感器。

点击这里,获取更多IOT物联网设计信息

最新文章