selina的博客

如何简化安全系统的设计?ADI帮您支几招

新的国际标准和法规加速了工业设备对安全系统的需求。功能安全的目标是保护人员和财产免受损害。这可以通过使用针对特定危险的安全功能来实现。安全功能由一系列子系统组成,包括传感器、逻辑和输出模块,因而需要系统层面和集成电路层面的专门技能来提供具有适当功能组合的IC。

墨菲定律变体之一:"如果几件事都可能出错,首先出错的往往是会造成最大损失的那一件。"

如果一个系统可能产生直接或间接的致命威胁,例如机器故障等,那么设计该系统时,必须最大程度地降低故障可能性及其导致的负面影响。为了确保发生随机性和确定性故障的概率尽可能低,必须遵循特定的设计方法。工业中将这种设计方法称为功能安全方法。这种方法要求对系统进行细致入微的分析,确定所有潜在的危险情况,并运用最佳做法来将器件、子系统和系统的故障风险(例如电压过高或诊断失败等)降至容许的水平。

功能安全背后的理念是当检测到错误时让系统保持安全状态,例如:若来自外部传感器的转换结果超出范围,则断开使能的输出连接。IEC-61508是工业设备功能安全设计参考标准,已针对不同行业进行了修改或阐释,例如ISO-26262适用于汽车行业,IEC-61131-6适用于可编程控制器。

支持紧凑型LO解决方案,还是靠“PLL + VCO”最佳拍档

新兴的PLL + VCO (集成电压控制振荡器的锁相环)技术能够针对蜂窝/4G、微波无线电防务等应用快速开发低相位噪声频率合成器,ADI集成频综产品的频率覆盖为25 MHz到13.6 GHz。

蜂窝/4G、微波无线电、测试设备和防务子系统应用的无线电设计人员依赖高质量本振(LO)来实现低BER(误码率)、低杂散输出和低相位噪声的系统级目标。所有的RF和微波通信和传感器系统,无论是基于模拟还是数字调制,都需要干净的LO信号源;无线电的容量越高,对LO信号的要求就越高。

有许多不同架构可用,但产生稳定LO源的最常用方法之一是将低相位噪声电压控制振荡器(VCO)和稳定基准电压及锁相环(PLL)组合构成频率合成器。不过,寻求最佳LO性能的设计人员必然会面临PLL/频率合成器、VCO、电荷泵及环路滤波器之间交互的诸多相关挑战,更不用说由于电路板布局和不良电源噪声所带来的问题。

ADI的核心专长是在频率生成元件方面,例如MMIC VCO、锁相振荡器(PLO)、低噪声预分频器、鉴频鉴相器(PFD)和一系列RF输入频率达13.6 GHz的双模式(小数/整数)PLL/频率合成器IC。

采用PGA的SAR转换器可实现125 dB的动态范围

作者:Thomas Tzscheetzsch

16位SAR转换器应用能否在600 kSPS时达到125 dB的动态范围?

答案:能,89 dB + 18 dB + 20 dB ≥ 125 dB。

简介

对于需要高动态范围的应用,通常使用∑-Δ转换器。这些应用主要可以在化学分析、医疗保健和体重管理领域找到。但是,其中许多模块无法快速转换。图1中的电路描述了一种将高动态范围与高转换率相结合的方法。

图1中的电路显示了带有2.5 MSPS和上游可编程仪表放大器的16位SAR转换器,它将增益设置为1或100。通过在FPGA中进行过采样和数字信号处理,该电路可实现大于125 dB的动态范围,并且仍然非常安静。高动态范围是通过AD8253的自动切换和过采样实现的,其中信号的采样速率远高于奈奎斯特频率。根据经验,采样频率加倍可在原始信号带宽下将信噪比(SNR)提高约3 dB。在图1所示的电路中,仍然在FPGA中应用数字滤波,以消除高于目标信号带宽的噪声。原理如图2所示。

如何增强工业电机控制性能?这两款隔离解决方案你要了解一下

隔离用户及敏感电子部件是电机控制系统的重要考虑事项。安全隔离用于保护用户免受有害电压影响,功能隔离则专门用来保护设备和器件。电机控制系统可能包含各种各样的隔离器件,例如:驱动电路中的隔离式栅极驱动器;检测电路中的隔离式ADC、放大器和传感器;以及通信电路中的隔离式SPI、RS-485、标准数字隔离器。无论是出于安全原因,还是为了优化性能,都要求精心选择这些器件。

虽然隔离是很重要的系统考虑,但它也存在缺点:会提高功耗,跨过隔离栅传输数据会产生延迟,而且会增加系统成本。系统设计师传统上求助于光隔离方案,多年来,它是系统隔离的最佳选择。

最近十年来,基于磁性(变压器传输)方法的数字隔离器提供了一种可行且在很多时候更优越的替代方案;从系统角度考虑,它还具备系统设计师可能尚未认识到的优点。接下来介绍两种隔离解决方案,重点论述磁隔离对延迟时序性能的改善,以及由此给电机控制应用在系统层面带来的好处。

隔离方法

光耦利用光作为主要传输方法,如图1所示。发送侧包括一个LED,高电平信号开启LED,低电平信号关闭LED。接收侧利用光电检测器将接收到的光信号转换回电信号。隔离由LED与光电检测器之间的塑封材料提供,但也可利用额外的隔离层(通常基于聚合物)予以增强。

解析钻石图?这个小工具24/7全天候在线

仪表放大器是适合压力或温度测量等各种应用的出色组件,它的主要作用包括信号放大和阻抗适配。

在许多情况下,仪表放大器具有参考输入引脚。在参考引脚上增加电压会使输出信号升高同等电压。这样就能简单精确地将仪表放大器的输出调整到ADC所需的输入电平,从而可以使用ADC的完整输入范围,同时提高分辨率。在具有高共模信号的情况下,另一优势是极为出色的共模抑制比和高精度。图1所示为典型3运算放大器设计中仪表放大器的内部原理图。AD8421具有通用特性,适合各种应用。

图1. 典型仪表放大器的内部架构

使用仪表放大器时应当意识到,最大输出电压取决于输入信号(共模或差分信号)、增益、电源电压以及可能来自内部结构的限制。在3运算放大器架构中,第一级放大器(反相和同相输入)以预设增益放大输入信号。第二级放大器起到的是减法器作用。输出信号由两个输入信号相减而构成。参考电压会加到生成组合输出的信号中。

是什么特性让这些MEMS传感器适用于智能基础设施?

平板电脑、智能电话、视频游戏机、摄录机和相机彻底改变了传感器世界,其中包括MEMS加速度计和陀螺仪。它们能够测量运动,导致很多使用这些传感器的设备得以改善性能并增加功能。

虽然消费电子应用激发了对这些传感器的需求,但其在其他市场的应用也在增加。随着数字化或物联网的出现,传感器正成为工业基础设施应用的核心。在这种情况下,应用依赖MEMS 进行状态监控和结构健康监测。与这些新应用相伴而来的是关于性能和可靠性的非常具体的标准。

智能基础设施

利用数字化创建智能基础设施可带来诸多好处,其中包括更高的容量、效率和可靠性。智能基础设施可为客户和用户提供更多且更有针对性的服务,而无需增加投资或资源。此外,互连基础设施可以收集数据,以帮助更有效地设计和实现未来基础设施。将智能引入基础设施还可以有效解决维护的主要挑战。MEMS传感器在结构健康监测中起着决定性作用。它们可用于测量倾斜度变化、振动分析以及线性或圆周运动——即使在极端条件下也能测量。通过此类传感器可以执行预测性维护,更好地利用可用资源并帮助避免服务故障和中断。ADI公司拥有深厚的专业知识,并已投入巨资开发可支持智能基础设施应用的MEMS技术。

ADXL35x MEMS加速度计系列

输入滤波器设计太复杂?“秒变”简单就靠它

所有作为开关模式电源的电源转换器都会引起干扰。这种干扰主要是由开关频率和开关转换的高频率引起的。在开关稳压器环境中,有三条干扰传输路径:辐射发射、以及开关稳压器输出侧和输入侧上的传导发射。

辐射发射在很大程度上取决于寄生元件,并可通过优化的电路板布局降低。有种高度创新的方法是采用 ADI 的开关稳压器,可使辐射发射降低达 40 dB (即 10,000 倍),此类稳压器的运行依据是“silent switcher”原理。这里,脉冲输入电流是非常对称的,因此产生的电场在很大程度上相互抵消。

传导发射可借助滤波器来降低。然而,有几件事情是必需考虑的。不仅滤波器需要进行优化以降低特定频率范围内的噪声,而且它还影响着整个电源的稳定性。开关稳压器具有一定的输入阻抗 ZIN。它必须高于输入滤波器的输出阻抗 ZOF。图 1 的框图显示了这两种阻抗。

如何设计并调试锁相环电路?妙计锦囊送给你

如果没有深入了解 PLL 理论以及逻辑开发过程,可能你在设计并调试锁相环(PLL)电路时会感到非常棘手。那有没有比较容易理解或学习妙招呢?小A今日就为大家送上一份妙计锦囊,并提供有效、符合逻辑的方法助你调试PLL问题。请往下看~

高质量仿真,从参考频率开始

如果不在特定条件下进行仿真,则估计一个 PLL 电路的规格将会是十分困难的。因此,进行 PLL 设计的第一步应当是仿真。建议工程师使用ADIsimPLL 软件运行基于系统要求的仿真,包括参考频率、步进频率、相位噪声(抖动)和频率杂散限制。

许多工程师面对如何选择参考频率会感到无所适从,但其实参考频率和输出频率步进之间的关系是很简单的。采用整数 N 分频 PLL,则输出频率步进等于鉴频鉴相器(PFD)输入端的频率,该频率等于参考分频器 R 分频后的参考频率。采用小数 N 分频 PLL,则输出频率步进等于 PFD 输入频率除以 MOD 值,因此,您可以使用较高的参考频率,获得较小的频率步进。决定使用整数 N 分频或是小数 N 分频时,可牺牲相位噪声性能换取频率步进,即:较低的 PFD 频率具有更好的输出频率分辨率,但相位噪声性能下降。

【工程师博客】爱迪生大象不在房间里

作者:DavidHTO

在我的上一篇博客中,我写到一位年轻人从俄亥俄州来到波士顿,在一家Scollay Square实验室疯狂地工作,他希望正在进行的这项发明能让他发财。但这位年轻人未能卖掉该设备,因此,当他离开波士顿前往纽约市时,这位名叫托马斯·爱迪生(Thomas Edison)的年轻人和两年前来到这里时一样身无分文。在纽约,当他成功售出在波士顿设计的证券报价机专利权时,命运就发生了逆转。爱迪生利用这些资金在新泽西建立实验室,开始大量创造发明,这些发明确实改变了世界。到1880年,这位制作出留声机和第一个实用灯泡的人被称为“门罗公园的鬼才”。

但是,讲到灯泡,这位鬼才有着阴暗的一面。

【工程师博客】莎士比亚、酒类走私贩和珍珠港

作者:DavidHTO

那是1916年4月21日,芝加哥人民正在享受一个美好的春日,严酷的冬天已经过去,距离炎热的夏季还有几个月。前一天,芝加哥小熊队在落成两年的Weegman Park开启了他们的第一个赛季,尽管上赛季小熊队仅取得了第五名的成绩,但重返世界大赛的希望仍很大。总体而言,1916年对于这座意图提升其伟大声誉的城市是辉煌的一年。这一年,年轻的Carl Sandburg发表了一首诗,他在诗中将这座城市描述为“世界屠猪城”。在温暖的天气里,美国第二大城市的空气中弥漫着杀猪的味道,任何在屠宰场附近观光的游客都能闻到。但这并没有阻止共和党在那个夏天来到这里举行四年一次的大会,他们将提名最高法院首席大法官Evans Hughes作为他们的总统候选人。

4月21日也是库克县法官Richard Stanley Tuthill对前两周一直在他面前争辩的一个案件作出裁决的日子。这项裁决在知名度上远不如在即将被命名为瑞格利球场的地方举行的棒球比赛,但却成为风城(芝加哥市的别称)乃至全世界的热点新闻。Tuthill法官裁定威廉·莎士比亚是一个骗子,其名下所有戏剧、诗歌和十四行诗的真正作者乃是哲学家、科学家和发明家弗朗西斯·培根。