selina的博客

用双极性方法驱动单极性栅极驱动器

作者:Ryan Schnell

是否需要专门的栅极驱动器来提供正负电压?

不需要。可以调整单极性栅极驱动器,改用双极性方式驱动。如果一个特殊的功率器件需要正负栅极驱动,电路设计人员无需特别寻找可进行双极性操作的特殊栅极驱动器。使用一个简单的技巧,就可以使单极性栅极驱动器提供双极性电压!

当驱动中/高功率MOSFET和IGBT时,一旦功率器件上的电压变化速率较高,就会存在密勒效应导通风险。电流通过栅极-漏极电容或栅极-集电极电容注入到功率器件的栅极。如果电流注入足够大,使栅极电压高于器件的阈值电压,则可以观察到寄生导通效应,从而导致效率降低,甚至出现器件故障。

通过使用一个从功率器件栅极到源极或漏极的超低阻抗路径,或者通过为栅极提供一个相对于源极或漏极的负驱动电压,可以缓解密勒效应。密勒效应导通缓解技术的目标是当通过密勒电容的电流达到尖峰时,保持栅极电压在期望的阈值以下。

某些功率器件类型的完全关断甚至需要负电压,必须要求来自栅极驱动器的负电压驱动。器件制造商建议使用负栅极驱动电压的器件包括标准的硅基MOSFET、IGBT、SiC和GaN器件。

实力支招,这七个应用的传感器可以这样选

加速度计能够测量加速度、倾斜、振动或冲击,因此适用于从可穿戴健身装置到工业平台稳定系统的广泛应用。市场上有成百上千的加速度计器件可供选择,其成本和性能各不相同。最新MEMS电容式加速度计应用于传统上由压电加速度计和其他传感器主导的应用领域。新一代MEMS加速度计可为CBM、结构健康监控(SHM)、资产健康监控(AHM)、生命体征监测(VSM)和物联网无线传感器网络等应用提供解决方案。然而,在有如此多加速度计和如此多应用的情况下,选择合适的加速度计并非易事。

尚无行业标准界定加速度计属于何种类别。加速度计的一般分类及相应的应用如表1所示。所示的带宽和g值范围是加速度计用在所列终端应用中的典型值。

表1.加速度计等级和典型应用领域

图1显示了各种MEMS加速度计的快照,并依据特定应用的主要性能指标和智能/集成水平将各传感器归类。

一文了解 ADI 集成无源技术计划 iPassives

集成无源器件在我们的行业中并不是什么新事物——它们由来已久且众所周知。实际上,ADI公司过去曾为市场生产过这类元件。当芯片组将独立的分立无源器件或者是集成无源网络作为其一部分包含在内时,需要对走线寄生效应、器件兼容性和电路板组装等考虑因素进行仔细的设计管理。虽然集成无源器件继续在业界占据重要地位,但只有当它们被集成到系统级封装应用中时才能实现其最重要的价值。

几年前,ADI开始推出新的集成无源技术计划 (iPassives™)。ADI 旨在通过这项计划提供二极管、电阻、电感和电容等无源元件,从而能够更广泛地涵盖信号链设计,同时克服现有采用无源元件方法的局限性和复杂性。ADI 的客户群对具有高效空间尺寸的更完整解决方案的需求,也推动了这项计划的发展。

从设计人员的角度来看,iPassives可以被视为一种灵活的设计工具,能够在极短的开发周期内设计出具有同类最佳性能和鲁棒性的系统解决方案。ADI 拥有许多信号调理 IC,独特硅制造工艺使这些 IC 能够实现卓越的性能。ADI 可以充分利用其现有产品的多样性来生产具有卓越性能特征的即插即用系统,而无需开发高度复杂的集成流程。

ADALM1000 SMU培训主题3:Thévenin等效电路和最大功率传输

作者: Antoniu Miclaus 和 Doug Mercer

在 2017年12月的模拟对话文章中介绍SMU ADALM1000后,我们希望继续使用ADALM1000系列的第三部分进行一些小型基本测量。您可以在此处找到第一篇ADALM1000文章。

图1. ADALM1000的原理图。

现在让我们开始下一个实验。

目的

本实验活动的目的是通过获得给定电路的Thévenin等效电压(V TH)和Thévenin等效电阻(R TH)来验证Thévenin定理,然后验证最大功率传递定理。

背景

ADALM1000 SMU培训主题1:电压和电流分配

作者 Doug Mercer

在2017年12月的模拟对话文章中介绍SMU ADALM1000之后,我们希望从一些小型基本测量开始。您可以在此处找到以前的ADALM1000文章。

图1. ADALM1000的原理图。

现在让我们开始第一个实验。

主题1:电压和电流分配

目的:本实验活动的目的是验证电阻网络的电压和电流分配特性。

背景:

电压和电流分配使我们能够简化分析电路的任务。电压分配允许我们计算串联电阻串上的总电压的哪一部分在任何一个电阻上下降。对于图2的电路,分压公式为:

多角度讲解高精度 SAR ADC的抗混叠滤波考虑因素

在物联网和云计算成为生活一部分,在行业媒体大肆宣扬之际,通过采用最先进的技术和优化设计,老式电子元件并未停止前进的步伐。其中一个例子是模数转换器,该器件现在可以超过每秒一兆次采样(MSPS)的速率实现32位分辨率,轻松通过传统的计量基准测试。

这些高精度转换器可以显示高于16位的分辨率,规定可比静态和动态特性,并且在仪表仪器和大型通用采集系统(测试、设备认证)、专业系统(医疗应用和光谱学数字成像)等专用领域以外,它们已经进入许多过程控制应用、可编程控制器、大型电机控制以及电能输配等领域。目前,几种ADC架构在精度方面不相上下;根据不同需求,具体的选择视模数转换原理、逐次逼近寄存器(SAR)以及∑-Δ而定,在数MSPS速率下,这些架构分别支持最高24位或以上的分辨率,为24位或更多,在几百kSPS速率下支持32位分辨率。

当面对这些分辨率和精度水平时,这些转换器提供的有用动态范围很容易超过100dBFS(满量程)的神奇屏障,用户面临的真正挑战体现在为要数字化的信号设计模拟调理电路,以及相关抗混叠滤波器的设计两个方面。在过去的二十年中,采样速率和滤波技术已经有了很大的发展,现在我们可以结合运用模拟和数字滤波器,在性能和复杂性之间达到更好的平衡。

图1. 典型测量信号链

一文理清IC放大器中那些“去耦”与“接地”问题

首先请思考:电流流向何处?

表面来看,这是一个显而易见的问题。但提到电流时,人们一般都会想到电流从某个地方“流出”,然后“流过”其他地方,却忽视了电流如何流回源点的问题。在实际操作中,人们似乎认为所有“接地”或“电源电压”点都是相等的。但忽略了一个事实 :这些点构成电流在其中流动并产生有限电压,它们是导体网络的一部分。

如果要进行前瞻性规划,我们必须得考虑电流的起点及返回点,必须确定结果产生的电压降的作用。而这又要求对去耦及接地电路的原理有一定的了解。然而在设计采用了集成电路时,这样的信息往往无从获取与难以理解。

我们的IC放大器是非常常用的线性IC之一,但幸运的是:就功率及接地问题而言,多数运算放大器都可归入少数类别。尽管系统配置可能带来令人生畏的去耦及信号回路问题,但通过了解运算放大器,我们可以找到解决更多此类问题的基本方法。

运算放大器有四个引脚

一般的读者在看过任何一本运算放大器的课本之后,可以都会认为:理想的运算放大器应该有三个引脚——一对差分输入引脚和一个输出引脚。如下图所示:

ToF应用火炎焱燚……这些demo即将引爆创新潮

“智慧连接未来- ADI 2018智慧物联应用方案巡展”近日在台北正式启动,丰富的产品方案和应用demo展示了充满智慧的未来生活方式,而ADI突破性的ToF技术是引爆全场的焦点,人头攒动火炎焱燚,预感一波创新潮即将发生。

ADI多年来深耕物联网领域,开发了各种成熟技术进行感测、测量、电源、连接与解读,并充分了解满足客户对于落地化软硬件技术的需求,利用本次巡展展现最新的物联网技术方案,期待引爆物联网技术应用创新的热潮!

SEPIC、升压、反相和反激式控制器解决了 高阻抗、超长工业电源线的电压降问题

Victor Khasiev ADI 公司

引言

LT8710 是一款多功能 DC/DC 控制器,该器件支持升压、SEPIC、反相或反激式配置,并且广泛用于汽车和工业系统。LT8710 具备的特性使其能够在高阻抗电源的应用、或者必须限制输入电流的应用中使用。例如,工业厂房和仓库中的长电源线增加了明显的输入源电阻以及从转换器至负载的显著电压降。当设备重新安置时该数值会发生变化,因而使稳压进一步复杂化。太阳能电池板也具有一个高输入阻抗,以及一个峰值功率输出和窄电压范围。本设计要点以锂离子电池充电器为例说明了LT8710 怎样解决高阻抗和电流受限输入电源的问题。

电路说明和功能

能否设计一个带过压保护的完整RTD模块?

Q、是否能设计一个带过压保护的完整 RTD 模块呢?

A、RTD(电阻温度检测器)具有出色的稳定性和精度,有较强的抗干扰能力。RTD传感器包括2线、3线和4线版本,通过电流激励能产生输出电压。AD7124-4/AD7124-8集成了两个匹配良好的电流源、PGA、基准电压缓冲器和诊断功能,非常适合高可靠性RTD模块。

在工业环境中,不当操作、错误的连接线和裸露的导线通常会导致过压故障,这会损坏电子器件,造成不良后果。过压保护能力是RTD模块的一项关键要求。除瞬态过压保护之外,实际生产过程中还必须考虑持续过压保护。

本文重点说明如何为具有过压保护功能的多线RTD模块(基于AD7124)提供全面解决方案,并介绍带有过压保护和检测功能的多路复用器及通道保护器。本文可以帮助设计人员了解此方法并选择合适的器件。

rong针对持续的过压保护功能

在 ADC 引脚前面使用串联电阻有助于轻松保护 AD7124。这些引脚包括模拟输入和激励输出引脚,但电阻会限制顺从电压。

电流源的保护可以通过分立元件实现。该解决方案可实现更高的过压保护和更大的顺从电压范围。但是,模拟开关与多路复用器仍然暴露在外。