selina的博客

员工成长故事丨实习在ADI,原来是这样一种感受

从2002年开始,ADI就致力于搭建与中国高校电子相关专业院系的沟通、合作平台。除了提供资金和技术支持外,ADI工程师正努力地向师生们传递着世界先进的模拟电子设计技术、经验和理念,通过课程、培训、竞赛、实习等多种形式培养出了许多富有创新能力和设计能力的人才。下面是一位在ADI实习过的大学生写的文章,跟随他的文字一同体验在ADI工作的感受吧。

四个月的实习生活结束了,离开了熟悉的工位、一起实习的小伙伴、茶水间的零食以及下午四点半健谈的同事,难免有些留恋。

很厉害,忒低调

ADI给我的印象大概是,低调,但厉害。有一次和一个新员工聊天,问他为什么来这里,他说,在做项目的时候需要用一款芯片,只有ADI的芯片能够达到技术要求,其他家的都不行,所以读完研他就来了。还有一次,吃饭的时候随便查各家科技公司的市值,惊奇地发现低调的ADI,市值竟然非常高!

讲平等,好温馨

电机绕组接错

绕组接错造成不完整的旋转磁场,致使启动困难、三相电流不平衡、噪声大等症状,严重时若不及时处理会烧坏绕组。主要有下列几种情况:某极相中一只或几只线圈嵌反或头尾接错;极(相)组接反;某相绕组接反; 多路并联绕组支路接错;“△”、“Y”接法错误。

1、故障现象

电动机不能启动、空载电流过大或不平衡过大,温升太快或有剧烈振动并有很大的噪声、烧断保险丝等现象。

2、产生原因

误将“△”型接成“Y”型;维修保养时三相绕组有一相首尾接反;减压启动是抽头位置选择不合适或内部接线错误;新电机在下线时,绕组连接错误;旧电机出头判断不对。

欢迎大家来探讨!

本文来源:whsuofu的博客

点击这里,获取更多电机控制设计信息

永磁无刷电机的四大控制策略

任何电动机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。直流电动机的主磁场和电枢磁场在空间互差90°,因此可以独立调节;交流电机的主磁场和电枢磁场互不垂直,互相影响。因此,长期以来,交流电动机的转矩控制性能较差。经过长期研究,目前的交流电机控制有恒压频比控制、矢量控制、直接转矩控制等方案。
  
一、恒压频比控制  
 
恒压频比控制是一种开环控制。它根据系统的给定,利用空间矢量脉宽调制转化为期望的输出电压uout进行控制,使电动机以一定的转速运转。在一些动态性能要求不高的场所,由于开环变压变频控制方式简单,至今仍普遍用于一般的调速系统中,但因其依据电动机的稳态模型,无法获得理想的动态控制性能,因此必须依据电动机的动态数学模型。永磁无刷电机的动态数学模型为非线性、多变量,它含有ω与id或iq的乘积项,因此要得到精确的动态控制性能,必须对ω和id,iq解耦。近年来,研究各种非线性控制器用于解决永磁无刷电机的非线性特性。  
 
二、矢量控制   

教你怎样选择伺服电机控制方式

伺服电机一般都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式 。

速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。

如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。

如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。

就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。

对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。

电动窗帘的工作原理

一、核心部件:电机。电动窗帘的主要工作原理是,通过一个电机来带动窗帘延着轨道来回运动,或者通过一套机械装置转动百叶窗,并控制电机的正反转。其中的核心就是电机,现在市场上电机的品牌和种类很多,但最终就是无非两大类:交流电机和直流电机

二、要实现自动窗帘控制应选用窗帘控制器,其输出的AC220V电压,能控制交流窗帘电机的正反转,接线柱“L”接220V电源线的火线;接线柱“N”接220V电源线的零线;输出端“1”接线柱接电机正转相;输出端“2”接线柱接电机反转相。

三、要调节好电机的行程,用户窗子的长度是不同的,这就对窗帘电机在轨道上的运行范围进行调节(百叶窗一般转动90度),具体调节方法请参照电机的生产厂家的说明书。

接下来根据用户需求给它设置地址,这样就可以通过各种发射器对窗帘进行控制了。例如:迷你控制器、无线系列、手机控制、电脑控制等。

每一扇电动窗帘都有一串单独编码,可以分别与家里的路由器对接。消费者只要在手机中下载企业的APP,就可以通过手机远程操控窗帘。比如,在炎热的夏日中午,准备从公司回家,这时就可以提前用手机将家里的窗帘全部关上,可以先使室内温度下降一些。

绝大多数电动窗帘都是“电动手动二合一”,即使直接手动操作也完全没有问题。

专家经验分享:宽动态范围的高端电流检测的三种解决方案(3)

在电机控制、电磁阀控制、通信基础设施和电源管理等诸多应 用中,电流检测是精密闭环控制所必需的关键功能。如何设计宽动态范围的高端电流检测电路,这对于大多数工程师来说都具有挑战性,这里分享由ADI技术专家Neil Zhao、Wenshuai Liao 和Henri Sino提供的几个建议电路供大家参考。

将按照设计复杂度从高到低的顺序介绍三种可选解决方案,它们能针对各种不同的应用提供可行的高精度、高分辨率电流检测。

1. 使用运算放大器、电阻和齐纳二极管等分立器件来构建电流传感器。这种解决方案以零漂移放大器AD8628 为核心器件。
2. 使用AD8210 等高压双向分流监控器来提高集成度,并利用其它外部器件来扩展动态范围和精度。
3. 采用针对应用而优化的器件, 例如最新推出的AD8217。AD8217 是一款易于使用且高度集成的零漂移电流传感器,输入共模电压范围为4.5 V 至80 V。

解决方案三:利用零漂移AD8217 进行高端电流监控

ADI 公司最近推出了一款高压电流传感器AD8217,它具有零漂移和500 kHz 带宽,专门用来增强宽温度、输入共模和差分电压范围内的分辨率和精确度。图3a 所示为该器件的简化框图;图3b 显示了一个典型应用。

解读火爆的多轴飞行器传感器技术

无人飞行器近一年来市场非常火爆,推动了包括MEMS陀螺仪、加速度计的大规模普及应用。《电子工程专辑》主编张迎辉日前撰文《多轴飞行器无人机硬件技术细谈》,文中通过采访ADI亚太区微机电产品市场和应用经理赵延辉,对MEMS传感器在无人飞行器中的产品技术及应用做了深度解读。

ADI的工业级陀螺仪ADXRS652、 ADXRS620、ADXRS623、ADXRS646、ADXRS642等和工业级加速度计ADXL203、 ADXL278等被广泛用于专业级的航拍设备上。而商业级的加速度计ADXL335、ADXL326、 ADXL350、ADXL345等,也一直被广泛应用于一体机及各种飞行器中。

这些MEMS传感器主要用来实现飞行器的平稳控制和辅助导航。飞行器之所以能悬停,可以做航拍,是因为MEMS传感器可以检测飞行器在飞行过程中的俯仰角和滚转角变化,在检测到角度变化后,就可以控制电机向相反的方向转动,进而达到稳定的效果。这是一个典型的闭环控制系统。至于用MEMS传感器测量角度变化,一般要选择组合传感器,既不能单纯依赖加速度计,也不能单纯依赖陀螺仪,这是因为每种传感器都有一定的局限性。

专家经验分享:宽动态范围的高端电流检测的三种解决方案(2)

在电机控制、电磁阀控制、通信基础设施和电源管理等诸多应 用中,电流检测是精密闭环控制所必需的关键功能。如何设计宽动态范围的高端电流检测电路,这对于大多数工程师来说都具有挑战性,这里分享由ADI技术专家Neil Zhao、Wenshuai Liao 和Henri Sino提供的几个建议电路供大家参考。

将按照设计复杂度从高到低的顺序介绍三种可选解决方案,它们能针对各种不同的应用提供可行的高精度、高分辨率电流检测。

1. 使用运算放大器、电阻和齐纳二极管等分立器件来构建电流传感器。这种解决方案以零漂移放大器AD8628 为核心器件。

2. 使用AD8210 等高压双向分流监控器来提高集成度,并利用其它外部器件来扩展动态范围和精度。

3. 采用针对应用而优化的器件, 例如最新推出的AD8217。AD8217 是一款易于使用且高度集成的零漂移电流传感器,输入共模电压范围为4.5 V 至80 V。

解决方案二:利用AD8210 和外部器件进行高端电流检测

图2a 所示为集成高压双向分流监控器AD8210 的简化框图;图2b 所示为采用外部基准电压源的单向应用。

专家经验分享:宽动态范围的高端电流检测的三种解决方案(1)

在电机控制、电磁阀控制、通信基础设施和电源管理等诸多应 用中,电流检测是精密闭环控制所必需的关键功能。如何设计宽动态范围的高端电流检测电路,这对于大多数工程师来说都具有挑战性,这里分享由ADI技术专家Neil Zhao、Wenshuai Liao 和Henri Sino提供的几个建议电路供大家参考。

将按照设计复杂度从高到低的顺序介绍三种可选解决方案,它们能针对各种不同的应用提供可行的高精度、高分辨率电流检测。

1. 使用运算放大器、电阻和齐纳二极管等分立器件来构建电流传感器。这种解决方案以零漂移放大器AD8628 为核心器件。

2. 使用AD8210 等高压双向分流监控器来提高集成度,并利用其它外部器件来扩展动态范围和精度。

3. 采用针对应用而优化的器件, 例如最新推出的AD8217。AD8217 是一款易于使用且高度集成的零漂移电流传感器,输入共模电压范围为4.5 V 至80 V。

解决方案一:配置一个标准运算放大器进行高端电流检测

电机控制之常用算法概述(4)

通用DC电机控制算法

通用电机的速度控制,特别是采用2种电路的电机:

1.相角控制

2.PWM斩波控制

相角控制

相角控制是通用电机速度控制的最简单的方法。通过TRIAC的点弧角的变动来控制速度。相角控制是非常经济的解决方案,但是,效率不太高,易于电磁干扰(EMI)。

以上示图表明了相角控制的机理,是TRIAC速度控制的典型应用。TRIAC门脉冲的周相移动产生了有效率的电压,从而产生了不同的电机速度,并且采用了过零交叉检测电路,建立了时序参考,以延迟门脉冲。

PWM斩波控制