ADI

作者:ADI公司产品营销工程师Max Liberman和业务开发经理Bob Scannell

在工业制造运营中,被动的设备维修是造成生产能力丧失的一个主要因素,这种维修本来是可以避免的。平均售价仅几美元的零部件,一旦发生故障,维修成本和由此导致的收入损失可能是其售价的好多倍。在最不利的情况下,未检测到的故障可能在系统中引起连锁反应,导致大面积损坏,触发生产停运,造成惨痛损失。传统上,制造商借助预防措施来保持生产现场正常运转。

相比事后维修,预防维护是一大进步,但与其相关的服务合同成本高昂,而且其确保设备连续正常运行的能力也是有限的。考虑让一台200英尺风力涡轮机的叶片转动的转子轴承。紧急维修和现场维护的成本会非常高,甚至可能有危险,因为技术人员需要在高空作业。另外,如果该涡轮机接入到本地市政电网,计划之外的停机可能引起能源生产损失,甚至电力服务中断。

一种新的工业检测技术正在帮助制造商们优化设备,它通过预测维护手段来预料零部件故障。虽然工业检测的形式有很多,但振动检测可能是最有效且最经济的。根据Lindsay Engineering(一家位于美国加州卡马里奥的预测维护产品和服务提供商)的研究,振动检测的投资回报是定期更换齿轮或电机油等措施的投资回报的三倍(参见图1)。

振动分析的优势

振动分析常用于旋转机械中,用以检测可能引起振动变化的轴承松动或磨损、设备未对准、液位偏低等。通常,这种振动的频率介于6 kHz到10 kHz。在更高频率也有一些数据可用,但受限于响应幅度而非常难以测量,并且需要超声等成本高昂的技术。通过测量该频率范围并监控响应的变化,制造商可以安排维护时间,或者在零部件损坏达到一定程度之前的最有利时间关停设备,防止损失引起更大的次生系统故障。

另外还可以利用各种统计公式来预测系统寿命,例如平均无故障时间(MTTF)和平均故障间隔时间(MTBF)。利用这些公式和来自系统的原始数据,客户便可直接处理潜在问题。例如,通过MTTF,您发现某种轴承的失效率较高。您可以利用振动传感器来密切监视该特定机器和轴承,确保失效不会发生。

图1. 旋转机械的典型振动频率范围是6 KHz到10 KHz

实现工业振动检测的最常见方式有两种:一是用传感器系统改造现有设备;二是与第三方服务商签约,按照计划定期执行设备测试。后一种方案的成本可能很高,而且定期检查的效果比不上直接将传感器安装在设备上。利用系统安装方法,制造商可以实现连续监控,但也存在传统上的限制。

当今大部分振动传感器的典型工作带宽低于5 kHz,比检测大多数设备故障所需的频率要低一大截。另外,常规传感器大多基于高压压电技术,需要体积很大的金属罐封装,而且要求频繁校准,不太容易大批量生产。还有一个问题是,其集成度通常较低,需要经过大量外部调理和处理才能提取有用信息。

MEMS方法

业界越来越需要其它能够更早检测到预测维护征兆且成本更低的方法,因此,基于微机电系统(MEMS)的振动传感器正在成为替代常规检测的重要方法。更重要的是,任何替代方案都必须以更高和更宽的频率范围工作,这是早期检测的关健。ADI公司提供一系列宽带宽MEMS传感器(ADXL001、ADIS16220、ADIS16223和ADIS16227),其具有22 kHz谐振带宽和高采样速率,是机器健康检测应用的理想选择。利用这些传感器,系统操作员可以及早发现要失效的设备,避免遭受重大损失。

振动监控错综复杂,准确捕捉振动剖面并正确解读数据更是需要高度复杂的专业知识。对于许多希望实施振动监控的厂商,最佳解决方案远不限于传感器元件。复杂性的很大一部分在于数据分析,对设备的典型时基分析会产生一个包含多种误差源的复杂波形,只有经过FFT分析之后才能获得可以分辨的信息。

多数压电传感器解决方案依赖外部FFT计算和分析。这种方法不仅使得实时通知毫无可能,而且大大增加了设备开发商的设计工作量。像ADI公司的ADIS16227等专业化MEMS传感器降低了这种复杂性,其提供嵌入式频域处理和512点实值FFT,片上存储器能够识别各种振动源并进行归类,监控其随时间的变化情况,并根据可编程的阈值做出反应。

该器件还具有可配置的报警频段和窗选项,支持对全频谱进行分析,并配置6个频段、报警1(警告阈值)和报警2(故障阈值),以便能够更早、更精准地发现问题。

为了确保准确捕捉数据,人们强烈要求实现嵌入式和自主检测。集成度合适的话(即集成传感器分析、存储器和报警功能),传感器系统可以嵌入到离潜在误差源更近的地方,从而更准确地反映机器振动情况,并显著降低接口复杂度,如线缆连接、场外分析和数据捕捉计划等。ADIS16227等器件是完整的数据转换和传感器处理解决方案,用户可通过串行外设接口(SPI)获得经处理的宽带宽传感器数据。这些器件可实现连续监控,并在达到用户设置的报警阈值时提供中断驱动的通知。如果关心功耗,它们还能按照用户制定的计划定期唤醒和记录。

图2. 诸如ADI公司的ADIS16227等MEMS传感器可以在高达22 kHz的频率检测零部件故障,从而提供关于设备故障的早期预警

欲了解更多信息,请访问 www.analog.com

点击这里,获取更多IOT物联网设计信息

浏览 1 次
62

健康监护正在走向可穿戴设备
当我还是个小男孩的时候,妈妈总是不停地叮嘱我要带够零钱,以防在遇到紧急情况时需要打电话。二十年后,移动电话使我们能够随时随地拨打电话。又经过20 年的创新后,语音通话已不再是手机这款智能设备的主要功能,它不仅可以拍摄美丽的照片、播放音频和视频流文件,而且还提供各种各样的服务——现在还逐渐成为我们的私人教练。配备传感器或者连接到穿戴式传感器后,这些设备可用来监控日常活动和个人健康状况。在不断增强的健康意识推动下,人们开始关注测量生命体征参数——如心率、体温、血氧饱和度、血压、活动水平(运动量)和脂肪燃烧量——以及追踪这些参数的日常变化趋势。

现在,装有多个传感器的通用传感器前端可监控这些参数。最大的挑战是最大程度地缩小尺寸并延长电池使用寿命。本文讨论面向迅猛增长的可穿戴电子产品市场的解决方案。

最重要的生命体征信号

没了心跳,我们就会有大麻烦,因此,脉搏或心率至今仍是我们需监控的最重要的参数。除了每分钟心跳次数以外,我们还想检查心脏行为与活动量的关系。心律也非常重要,因为快速变化的心率是心脏疾病的征兆。

心率和心脏活动监护通常是使用心电图(ECG)测量生理电信号来实现。连接到身体上的电极可测量心脏组织中心电的信号的活动。专业的诊断系统便是基于此原理,测量时胸部和四肢最多可连接10 个电极。ECG 可提供一次心跳不同分量(P 波、QRS 波和T 波)的相关详细信息。

AD8232 单导联ECG 前端

图1. AD8232 单导联ECG 前端

单导联ECG 在体育界的应用越来越普遍,其使用双电极胸带来测量心脏活动。虽然可检测到各种ECG 波形,但大多数系统只测量心率。这些胸带穿戴起来并不舒服,因此,体育和保健行业正在寻找替代方案,例如将电极集成到运动衫上。AD8232 单导联心率监护仪前端(如图1 所示)就是专为此类低功耗可穿戴应用而开发的。该器件内置增益为100 V/V 的仪表放大器和一个高通滤波器,能阻止皮肤上电极的半电池电位产生的失调电压。输出缓冲器和低通滤波器则可抑制肌肉活动产生的高频分量(EMG 信号)。此低功耗前端功耗为170 μA,可与16 位片上计量仪ADuCM350配合使用,进行高性能、单导联ECG 测量。

测量心率的新方法

心率测量的新趋势是光电容积图(PPG),这是一种无需测量生物电 信号就能获得心脏功能信息的光学技术。PPG 主要用于测量血氧 饱和度(SpO2),但也可不进行生物电信号测量就提供心脏功能信 息。借助PPG 技术,心率监护仪可集成到手表或护腕等可穿戴设 备上。由于生理电势法的信号电平极其微弱,所以无法做到这 一点。

在光学系统中,光从皮肤表面投射出来。再由光电传感器测量红细胞吸收的光量。随着心脏跳动,不断变化的血容量使接收到的光量分散开来。在手指或耳垂上进行测量时,由于这些部位有相当多的动脉血,使用红光或红外光源可获得最佳精度。不过,手腕表层很少有动脉存在,腕部穿戴式设备必须通过皮肤表层下面的静脉和毛细血管来检测脉动分量,因此绿光效果会更好。

ADPD142 光学模块(如图2 所示)具备完整的光度测量前端,并集成光电传感器、电流源和LED。该器件专为测量反射光而设计,可用来实现PPG 测量。所有元件都封装在一个小小的模块上。

ADPD142 光学模块

图2. ADPD142 光学模块

使用光学VSM 所面临的挑战

利用腕部穿戴式设备测量PPG 面临的主要挑战来自环境光和运动产生的干扰。阳光产生的直流误差相对而言比较容易消除,但日光灯和节能灯发出的光线都带有可引起交流误差的频率分量。模拟前端使用两种结构来抑制DC 至100 kHz 的干扰信号。模拟信号经过调理后,14 位逐次逼近型数模转换器(ADC)将信号数字化,再通过I2C 接口发送到微处理器进行最终后处理。

同步发送路径与光接收器并行集成在一起。其独立的电流源可驱动两个单独的LED,电流电平最多可编程至250 mA。LED 电流是脉冲电流,脉冲长度在微秒级,因此可保持较低的平均功耗,从而最大程度地延长电池使用寿命。

LED 驱动电路是动态电路且可即时配置,因此不受各种环境条件影响,例如环境光、穿戴者皮肤和头发的色泽或传感器和皮肤之间的汗液,这些都会降低灵敏度。激励LED 配置非常方便,可用于构建自适应系统。所有时序和同步均由模拟前端处理,因此不会增加系统处理器的任何开销。

ADPD142 提供两种版本:ADPD142RG 集成红光LED 和绿光 LED,用于支持光学心率监护;ADPD142RI 集成红光LED 和红 外LED,用于进行血氧饱和度(SpO2)测量。)

运动的影响

运动也会干扰光学系统。当光学心率监护仪用于睡眠研究时,这可能不是问题,但如果在锻炼期间穿戴,运动腕表和护腕将很难消除运动伪像。光学传感器(LED 和光电检测器)和皮肤之间的相对运动会降低光信号的灵敏度。此外,运动的频率分量也可能会被视为心率测量,因此,必须测量该运动并进行补偿。设备与人体相贴越紧密,这种影响就越小,但采用机械方式消除这种影响几乎是不可能的。

我们可使用多种方法来测量运动。其中一种是光学方法,即使用多个LED 波长。共模信号表示运动,而差分信号用来检测心率。不过,最好是使用真正的运动传感器。该传感器不仅可准确测量应用于可穿戴设备的运动,而且还可用于提供其他功能,例如跟踪活动、计算步数或者在检测到特定g 值时启动某个应用。

ADXL362 是一款微功耗、3 轴MEMS(微机电系统)加速度计,非常适合在电池供电型可穿戴应用中检测运动。内置的12 位ADC可将加速度值转换为数字信号,分辨率为1 mg。功耗随采样速率动态变化,当输出数据速率为100 Hz 时功耗仅为1.8 μA,在400 Hz时为3.0 μA。这些较高的数据速率对于用户接口来说非常有用,例如单击/双击检测。

对于在检测到运动时启动某个应用的情况,则无需进行高速采样,因此可将数据速率降至6 Hz,此时平均功耗为300 nA。因而,对于低功耗应用和不易更换电池的植入式设备来说,此传感器非常有吸引力。ADXL362 采用3.0 mm × 3.25 mm 封装。图3 显示了不同电源电压条件下电源电流与输出数据速率之间的关系图。

图3. ADXL362 电源电流与输出数据速率的关系

系统中各传感器的连接

系统的核心是混合信号片上计量仪ADuCM350,它与所有这些传感器相连,并负责运行必要的软件,以及储存、显示或传送结果。该器件集成高性能模拟前端( AFE)和16 MHz ARM® Cortex®-M3处理器内核,如图4 所示。AFE 的灵活性和微处理器丰富的功能组合使此芯片成为便携式应用和可穿戴应用的理想选择。可配置的AFE 支持几乎所有传感器,其可编程波形发生器可使用交流或直流信号为模拟传感器供电。高性能的接收信号链会对传感器信号进行调理,并使用无丢码16 位160 kSPS ADC 将这些信号数字化。其中,后者的积分非线性(INL)/差分非线性(DNL)最大值为±1-LSB,。该接收信号链支持任何类型的输入信号,包括电压、电流、恒电势、光电流和复阻抗。

图4. 集成AFE 的Cortex-M3

AFE 可在独立模式下工作,无需Cortex-M3 处理器干预。可编程时序控制器控制测量引擎,测量结果通过DMA 储存到存储器内。开始测量前,可执行校准程序,以校正发送和接收信号链中的失调和漂移误差。对于复阻抗测量,如血糖、体质指数(BMI)或组织鉴别应用,内置DSP 加速器可实现2048 点单频离散傅里叶变换(DFT),而无需M3 处理器干预。这些高性能AFE 功能使ADuCM350 具有其他集成解决方案无可比拟的独特优势。

Cortex 处理器支持多种通讯端口,包括I2S、USB、MIPI 和LCD显示驱动器(静态)。此外,它还包括闪存、SRAM 和EEPROM,并且支持五种不同的电源模式,可最大程度地延长电池使用寿命。

ADuCM350 设计用于超低功耗传感器,性能限制为低速器件。对于要求更高处理能力的应用,可使用工作频率高达80 MHz 的M3内核或者Cortex-M4 处理器内核。

功耗如何?

功耗一直是便携式设备和可穿戴设备中的一个关键因素。本文介绍的设备在设计上要求性能高、尺寸小且功耗低,但在非常小的封装内集成所有一切器件(包括电池)仍然是一个挑战。尽管新的电池技术实现了每mm3 更高的容量,但与电子产品相比,电池仍然体积较大。

能量采集可减小电池尺寸并延长电池使用寿命。能量收集技术有多种,包括热电、压电、电磁和光电等技术。对于可穿戴设备,利用光和热最为合适。传感器通常不会产生大量输出功率,因此每焦耳热量都应当可以被捕获和使用。ADP5090 超低功耗升压调节器(如图5 所示)桥接收集器和电池。此高效开关模式电源可将输入电压从低至100 mV 升高到3 V。冷启动期间,在电池完全放电的情况下,最小输入电压为380 mV,但在正常工作时,如果电池电量没有完全耗尽或者还有一些电能留在超级电容内,任何低至100 mV 的输入信号都可转换为较高的电位并储存下来,以供稍后使用。

该芯片采用微型3 mm × 3 mm 封装,并可进行编程来支持各种不同的能量收集传感器。最大静态电流为250 nA,支持几乎所有电池技术,从锂离子电池到薄膜电池以及超级电容均可。集成式保护电路可确保其安全运行。

图5. ADP5090 能量采集器

结论

本文介绍了一些用于可穿戴和个人健康应用的低功耗产品,但这个快速增长的市场正在快速变化。ADI 公司的技术可以将这些颇具挑战性的难题转变为完善的产品和完整的解决方案。更多惊喜敬请期待。

参考电路 www.analog.com/healthcare

作者:Jan-Hein Broeders

Jan-Hein Broeders是ADI公司负责欧洲、中东和非洲业务的医疗健康业务开发经理。他与医护人员密切合作,将他们现在和将来的需求转化为各种解决方案。Jan-Hein拥有超过20年的半导体行业工作经验。他于2005年加入ADI,担任飞利浦全球现场应用工程师(FAE),自2008年起开始担任目前的职务。他拥有荷兰斯海尔托亨博斯大学的电气工程学士学位。

浏览 1 次
26

作者:Alan Righter、Brett Carn及EOS/ESD协会

充电器件模型(CDM) ESD被认为是代表ESD充电和快速放电的首要实际ESD模型,能够恰如其分地表示当今集成电路(IC)制造和装配中使用的自动处理设备所发生的情况。到目前为止,在制造环境下的器件处理过程中,IC的ESD损害的最大原因是来自充电器件事件,这一点已广为人知。

充电器件模型路线图

对IC中更高速IO的不断增长的需求,以及单个封装中集成更多功能的需要,推动封装尺寸变大,因而维持JEP1572, 3中讨论的推荐目标CDM级别将是一个挑战。还应注意,虽然技术扩展对目标级别可能没有直接影响(至少低至14 nm),但这些高级技术改进了晶体管性能,进而也能支持更高IO性能(传输速率),因此对IO设计人员而言,实现当前目标级别同样变得很困难。由于不同测试仪的充电电阻不一致,已公布的ESD协会(ESDA)截止20204年路线图建议,CDM目标级别将需要再次降低,如图1所示。

2010年及以后的充电器件模型灵敏度限值预测(版权所有©2016 EOS/ESD协会)

图1. 2010年及以后的充电器件模型灵敏度限值预测(版权所有©2016 EOS/ESD协会)

快速浏览图1不会发现CDM目标级别有明显变化,但进一步查阅ESDA提供的数据(如图2所示)可知,CDM ESD目标级别的分布预期会有重大变化。

充电器件模型灵敏度分布组别前瞻(版权所有©2016 EOS/ESD协会)

图2. 充电器件模型灵敏度分布组别前瞻(版权所有©2016 EOS/ESD协会)

为何讨论此变化很重要?它指出了需要采用一致的方法来测试整个电子行业的CDM,应排除多种测试标准所带来的一些不一致性。现在,确保制造业针对ESDA讨论的CDM路线图做好适当准备比以往任何时候都更重要。这种准备的一个关键方面是确保制造业从各半导体制造商收到的关于器件CDM鲁棒性水平的数据是一致的。对一个协调一致的CDM标准的需求从来没有像现在这样强烈。再加上持续不断的技术进步,IO性能也会得到提高。这种对更高IO性能的需要(以及降低引脚电容的需要),迫使IC设计人员别无选择,只能降低目标级别,进而需要更精密的测量(在ANSI/ESDA/JEDEC JS-002中有说明)。

新联合标准

在ANSI/ESDA/JEDEC JS-002之前有四种现存标准:传统的JEDEC(JESD22-C101)5、ESDA S5.3.16、AEC Q100-0117和EIAJ ED-4701/300-2标准8。ANSI/ESDA/JEDEC JS-002(充电器件模型、器件级别)9代表了将这四种现有标准统一为单一标准的一次重大努力。虽然所有这些标准都产生了有价值的信息,但多种标准的存在对行业不是好事。不同方法常常产生不同的通过级别,多种标准的存在要求制造商支持不同的测试方法,而有意义的信息并无增加。因此,以下两点非常重要:IC充电器件抑制能力的单一测量水平是广为人知的,以确保CDM ESD设计策略得到正确实施;IC的充电器件抑制能力同它将接触到的制造环境中的ESD控制水平一致。

为了解决这个问题,2009年成立的ESDA和JEDEC CDM联合工作小组(JWG)开发了JS-002。此外,JWG希望根据引入场感应CDM (FICDM)以来所获得的经验教训对FICDM进行技术改进10。最后,JWG希望尽量减少对电子行业的冲击。为了减少行业冲击,工作小组决定,联合标准不应要求购买全新场感应CDM测试仪,并且通过/失败水平应尽可能与JEDEC CDM标准一致。JEDEC标准是使用最广泛的CDM标准,因此JS-002与当前制造业对CDM的理解保持一致。

虽然JEDEC和ESDA的测试方法非常相似,但两种标准之间有一些不同之处需要化解。JS-002还试图解决一些技术问题。一些最重要问题列示如下。

标准之间的差异

* 场板电介质厚度
* 用于验证系统的验证模块
* 示波器带宽要求
* 波形验证参数

标准的技术问题

* 测量带宽要求对CDM而言太慢
* 人为地让JEDEC标准中的脉冲宽度很宽
* 波形和设备几何要求迫使需要进行隐藏电压调整

为了达成目标并实现统一,作出了如下硬件和测量选择。在为期五年的文件编制过程中,工作小组进行了大量测量才作出这些决定。

硬件选择

* 使用JEDEC电介质厚度
* 使用JEDEC“硬币”进行波形验证
* 禁止在放电路径中使用铁氧体

测量选择

* 系统验证/验收需要最低6 GHz带宽的示波器
* 例行系统验证允许使用1 GHz示波器尽量减少数据损坏并讨论隐藏电压调整
* 让目标峰值电流与现有JEDEC标准一致
* 指定与JEDEC压力级别匹配的测试条件;对于JS-002测试结果,指的是测试条件(TC);对于JEDEC和AEC,指的是伏特(V)
* 对于JS-002,调整场板电压以提供与传统JEDEC峰值电流要求对应的正确峰值电流确保较大封装完全充电
* 为确保较大封装完全充电,引入了一个新的程序

下面说明这些改进。

JS-002硬件选择

JS-002 CDM硬件平台代表了ESDA S5.3.1探针组件或测试头放电探针同JEDEC JESD22-C101验证模块和场板电介质的结合。图3所示为硬件对比。ESDA探针组件的放电路径中没有特定铁氧体。FICDM测试仪制造商认为,铁氧体是必要的,增加铁氧体可提高500 ps的半峰全宽(FWHH)额定最小值,并将Ip2(第二波峰)降至第一波峰Ip1的50%以下,从而满足传统JEDEC要求。JS-002去掉了此铁氧体,从而消除了放电中的这种限制因素,使得放电波形更准确,高带宽示波器在Ip1时看到的振铃现象不再存在。

JEDEC和JS-002平台硬件原理图

图3. JEDEC和JS-002平台硬件原理图

图4显示了ESDA和JEDEC CDM标准验证模块的区别。ESDA标准提供两个电介质厚度选项,并结合验证模块(第二个选项是模块和场板之间有一层最多130 μm的额外塑料薄膜,用于测试带金属封装盖的器件)。JEDEC验证模块/FR4电介质代表一个单一小/大验证模块和电介质选项,支持它的JEDEC标准用户要多得多。

ESDA和JEDEC验证模块比较JS-002使用JEDEC模块

图4. ESDA和JEDEC验证模块比较JS-002使用JEDEC模块。

JS-002测量选择

在JS-002标准制定的数据收集阶段,CDM JWG发现需要更高带宽的示波器才能精确测量CDM波形。1 GHz带宽示波器未能捕捉到真正的第一峰值。图5和图6说明了这一点。

大JEDEC验证模块在500 V JEDEC时与JS-002 TC500在1 GHz时的CDM波形

图5. 大JEDEC验证模块在500 V JEDEC时与JS-002 TC500在1 GHz时的CDM波形

大JEDEC验证模块在500 V JEDEC时与JS-002 TC500在6 GHz时的CDM波形

图6. 大JEDEC验证模块在500 V JEDEC时与JS-002 TC500在6 GHz时的CDM波形

例行波形检查,例如每日或每周的检查,仍可利用1 GHz带宽示波器进行。然而,对不同实验室测试站点的分析表明,高带宽示波器能提供更好的站点间相关性。11例行检查和季度检查推荐使用高带宽示波器。年度验证或更换/修理测试仪硬件之后的验证需要高带宽示波器。

表1. JS-002波形数据记录表示例,显示了造成TC(测试条件)电压的因素9

测试仪CDM电压设置

CDM JWG同时发现,对于不同测试仪平台,为了获得符合先前ESDA和JEDEC标准的标准测试波形,实际板电压设置需要有相当大的差异(例如,特定电压设置为100 V或更大)。这在任何标准中都没有说明。JS-002唯一地确定了将第一峰值电流(以及测试条件所代表的电压)缩放到JEDEC峰值电流水平所需的偏移或因数。JS-002附录G对此有详细说明。表1显示了一个包含此特性的验证数据实例。

在设定测试条件下确保超大器件完全充电

在JS-002开发的数据收集阶段还发现了一个与测试仪相关的问题:放电之前,某些测试系统未将大验证模块或器件完全充电到设定电压。不同测试系统的大值场板充电电阻(位于充电电源和场板之间的串联电阻)不一致,影响到场板电压完全充电所需的延迟时间。结果,不同测试仪的第一峰值放电电流可能不同,影响CDM的通过/失败分类,尤其是大器件。

因此,工作小组撰写了详实的附录H(“确定适当的充电延迟时间以确保大模块或器件完全充电”),描述了用于确定器件完全充电所需延迟时间的程序。当出现峰值电流饱和点(Ip基本保持稳定,设置更长的延迟时间也不会使它改变)时,说明达到了适当的充电延迟时间,如图7所示。确定此延迟时间,确保放电之前,超大器件能够完全充电到设定的测试条件。

峰值电流与充电时间延迟关系图示例,显示了饱和点/充电时间延迟9

图7. 峰值电流与充电时间延迟关系图示例,显示了饱和点/充电时间延迟9

电子行业逐步采用JS-002

对于采用ESDA S5.3.1 CDM标准的公司,JS-002标准取代了S5.3.1,应将S5.3.1废弃。对于先前使用JESD22-C101的公司,JEDEC可靠性测试规范文件JESD47(规定JEDEC电子元件的所有可靠性测试方法)最近进行了更新,要求用JS-002代替JESD22-C101(2016年末)。JEDEC会员公司转换到JS-002的过渡时期现已开始。很多公司(包括ADI和Intel)已经对所有新产品利用JS-002标准进行测试。国际电工委员会(IEC)最近批准并更新了其CDM测试标准IS60749-28。12此标准全盘纳入JS-002作为其指定测试标准。

汽车电子理事会(AEC)目前有一个CDM小组委员会,其正在更新Q100-011(集成电路)和Q101-005(无源器件)车用器件CDM标准文件以纳入JS-002,并结合AEC规定的测试使用条件。这些工作预计会在2017年底完成并获批准。

结语

观察ESDA提供的CDM ESD路线图,可知在更高IO性能的驱动下,CDM目标级别会继续降低。制造业对器件级CDM ESD耐受电压的认知比以往任何时候都更重要,而来自不同CDM ESD标准的不一致产品CDM结果是无法传达这一讯息的。ANSI/ESDA/JEDEC JS-002有机会成为第一个真正的适用于全行业的CDM测试标准。消除CDM测试头放电路径中的电容,可显著改善放电波形的质量。引入高带宽示波器用于验证,提高到五个测试条件波形验证级别,以及保证适当的充电延迟时间——所有这些措施显著降低了不同实验室的测试结果差异,改善了站点间的可重复性。这对确保向制造业提供一致的数据至关重要。电子行业接受JS-002标准之后,将有能力更好地应对前方的ESD控制挑战。

参考文献

1 RRoger J. Peirce。“ESD损害的最常见原因”。Evaluation Engineering,2002年11月。

2 IESD目标级别工业理事会。“工业理事会白皮书2:降低器件级CDM ESD规格和要求的一个案例”。EOS/ESD协会,2010年4月。

3 “JEP157:推荐ESD-CDM目标级别”。JEDEC,2009年10月。

4 EOS/ESD协会路线图。

5 “JESD22-C101F:微电子器件静电放电耐受阈值的场感应充电器件模型测试方法”。JEDEC,2013年10月。

6 “ANSI/ESD S5.3.1:静电放电灵敏度测试——充电器件模型(CDM)器件级别”。EOS/ESD协会,2009年12月。

7 “AEC-Q100-011:充电器件模型(CDM)静电放电测试”。汽车电子理事会,2012年7月。

8 “EIAJ ED-4701/300-2,测试方法305:充电器件模型静电放电(CDM-ESD)”。日本电子与信息技术行业协会,2004年6月。

9 “ANSI/ESDA/JEDEC JS-002-2014:充电器件模型(CDM)器件级别”。EOS/ESD协会,2015年4月。

10 Alan W. Righter、Terry Welsher和Marti Ferris。“迈向联合ESDA/JEDECCDM标准:方法、实验和结果”。EOS/ESD论文集,2012年9月。

11 Theo Smedes、Michal Polweski、Arjan van IJzerloo、Jean-Luc Lefebvre和Marcel Dekker。“CDM校准程序的隐患”。EOS/ESD论文集,2010年10月。

12 “IEC IS 60749-28,静电放电(ESD)灵敏度测试——充电器件模型(CDM) - 器件级别”。国际电工委员会,2017年。

作者介绍

Alan Righter

Alan [alan.righter@analog.com]是ADI公司位于美国加州圣何塞的企业ESD部的高级ESD工程师。他与ADI公司全球设计/产品工程团队一起负责整个芯片的ESD规划/设计、ESD测试、ESD故障分析以及内部和外部客户存在的EOS问题。加入ADI之前,Alan在Sandia National Laboratories(位于美国新墨西哥州阿尔伯克基市)工作了13年,参与了IC设计、测试、产品工程、可靠性测试和故障分析。Alan于
1982年和1984年分别获得亚利桑那州立大学电气工程学士学位和电气工程硕士学位,并于1996年获得新墨西哥大学博士学位。2007年,Alan加入了所有的标准设备测试工作组(WG5.x),同时也是系统和仿真器WG 14的成员。他于2008年被任命为WG 5.3.1(充电装置模型)的主席,目前担任扩展联合(ESDA/JEDEC) CDM工作组的ESDA主席,最近完成了新的ESDA/JEDEC联合标准JS-002。Alan目前也是ESD协会的副主席。作为10篇文章的作者/合著者,Alan一直积极参加EOS/ESD研讨会,他目前也是ESDA事件总监。Alan在ESD目标级别行业理事会中也很活跃。

Brett Carn

Brett Carn [brett.w.carn@intel.com]于1999年加入英特尔公司,现在是企业质量网络的首席工程师。他一直关注英特尔器件级别ESD领域。作为首席工程师,Brett主持英特尔ESD理事会,负责全球所有英特尔网站的元件级别ESD和闩锁测试,定义所有内部测试规范,审查所有英特尔ESD设计规则,监督/定义全球所有英特尔产品的ESD目标级别并领导许多产品的后晶片ESD调试。最近几年,Brett还一直积极致力于解决EOS挑战。加入英特尔之前,他在LatticeSemiconductor工作了13年,在20世纪90年代早期便开始从事ESD相关工作。从2007年开始,Brett一直是ESD目标级别行业理事会的成员,协助撰写了数本白皮书,同时担任四本白皮书的责任编辑。Brett是ESDA的积极成员,目前也是
ESDA董事会的成员之一。Brett也是ESDA教育委员会的成员,负责监督所有在线培训,目前是技术和咨询支持(TAS)委员会的主席以及几个ESDA工作组的成员。Brett于1986年获得波特兰州立大学电气工程学士学位。

EOS/ESD协会

EOS/ESD协会是最大的行业组织,致力于实施ESD保护理论和实践,在全球拥有2000多名成员。读者可通过以下网址了解有关该协会及其工作的更多信息: http://www.esda.org .

点击这里,获取更多IOT物联网设计信息

围观 2
44

页面

订阅 RSS - ADI